Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from tensorflow.keras.models import load_model
|
3 |
+
from tensorflow.keras.preprocessing import image
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
# Function to load and preprocess the uploaded image
|
8 |
+
def load_and_preprocess_image(uploaded_image, target_size=(224, 224)):
|
9 |
+
img = Image.open(uploaded_image) # Open the uploaded image
|
10 |
+
img = img.resize(target_size) # Resize to match model's input shape
|
11 |
+
img_array = np.array(img) # Convert to numpy array
|
12 |
+
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
|
13 |
+
img_array = img_array / 255.0 # Normalize pixel values
|
14 |
+
return img_array
|
15 |
+
|
16 |
+
# Load your pre-trained model (assuming it's in HDF5 format)
|
17 |
+
@st.cache(allow_output_mutation=True) # Cache the model to avoid reloading it each time
|
18 |
+
def load_cnn_model():
|
19 |
+
model = load_model('brain_tumor_model.h5') # Replace with your model path
|
20 |
+
return model
|
21 |
+
|
22 |
+
# Streamlit App UI
|
23 |
+
st.title("Brain Tumor using CNN")
|
24 |
+
st.write("Upload a brain scan (JPG format), and the model will predict its class.")
|
25 |
+
|
26 |
+
# Upload image button
|
27 |
+
uploaded_file = st.file_uploader("Choose a JPG image...", type="jpg")
|
28 |
+
|
29 |
+
# If an image is uploaded, process it
|
30 |
+
if uploaded_file is not None:
|
31 |
+
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
|
32 |
+
st.write("Classifying...")
|
33 |
+
|
34 |
+
# Preprocess the uploaded image
|
35 |
+
processed_image = load_and_preprocess_image(uploaded_file, target_size=(224, 224))
|
36 |
+
|
37 |
+
# Load the model
|
38 |
+
model = load_cnn_model()
|
39 |
+
|
40 |
+
# Make predictions
|
41 |
+
predictions = model.predict(processed_image)
|
42 |
+
predicted_class = np.argmax(predictions, axis=1)
|
43 |
+
|
44 |
+
# Map the class index to the actual class names
|
45 |
+
class_names = ['glioma', 'pituitary', 'meningioma', 'healthy']
|
46 |
+
result = class_names[predicted_class[0]]
|
47 |
+
|
48 |
+
# Display the prediction
|
49 |
+
st.write(f"Predicted Class: **{result}**")
|
50 |
+
else:
|
51 |
+
st.write("Please upload an image to classify.")
|
52 |
+
|