Spaces:
Runtime error
Runtime error
File size: 20,512 Bytes
12c0ff2 f66f023 7b903ed 373ffd5 7b903ed 69dd6c1 7b903ed 373ffd5 12c0ff2 373ffd5 12c0ff2 373ffd5 12c0ff2 373ffd5 12c0ff2 373ffd5 12c0ff2 373ffd5 12c0ff2 7b903ed 12c0ff2 373ffd5 12c0ff2 373ffd5 12c0ff2 373ffd5 12c0ff2 373ffd5 12c0ff2 373ffd5 12c0ff2 7b903ed 12c0ff2 373ffd5 12c0ff2 7054e4c 3a433e4 12c0ff2 7b903ed 373ffd5 7b903ed 373ffd5 7b903ed 12c0ff2 373ffd5 12c0ff2 373ffd5 7b903ed 373ffd5 7b903ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
import time
import openpyxl
import os
import openai
import concurrent.futures
import gradio as gr
from tqdm import tqdm
import tempfile
import datetime
from DataFormat import DataFormat
from DataFormat import GetTokenforStr
import uploadData
import json
def ChatV2(params):
systemPrompt,ques,gptVersion,temperature=params
completion = openai.ChatCompletion.create(
# model="gpt-3.5-turbo",
# model="gpt-4",
model=gptVersion,
messages=[{"role": "system", "content": systemPrompt}, {"role": "user", "content": ques}],
temperature=temperature,
timeout=30
)
return systemPrompt, ques, completion['choices'][0]['message']['content']
def ChatV2_estimate(params):
checkBox=["GPT生成结果翻译成中文", "文本语法解析"]
systemPrompt,prompt,ques,gptVersion,inetuneGptVersion,temperature,Checkboxgourd=params
maxNum=4
for i in range(maxNum):
try:
if '{Q1}' in prompt:
gptques=prompt.replace('{Q1}',ques)
else:
gptques=prompt+ques
print(gptques)
completion = openai.ChatCompletion.create(
# model="gpt-3.5-turbo",
model=gptVersion,
messages=[{"role": "system", "content": systemPrompt}, {"role": "user", "content":gptques}],
temperature=temperature,
timeout=30
)
print([{"role": "system", "content": systemPrompt}, {"role": "user", "content":gptques}])
FineTunecompletion = openai.ChatCompletion.create(
# model="gpt-3.5-turbo",
# model="gpt-4",
model=inetuneGptVersion,
messages=[{"role": "system", "content": systemPrompt}, {"role": "user", "content": gptques}],
temperature=temperature,
timeout=30
)
except Exception as e:
print(e)
print('第{}次错误,错误文本:{}'.format(i+1,ques))
time.sleep(6*(i+1)) #如果请求失败则过10s重新请求
if i==maxNum-1:
return systemPrompt, ques,'',str(e),''
time.sleep(1)
gptText=completion['choices'][0]['message']['content']
gptText2=FineTunecompletion['choices'][0]['message']['content']
extData=[]
for Checkbox in Checkboxgourd:
if Checkbox == 'GPT生成结果翻译成中文':
systemTran='你是一个对中文和日语非常了解的语言大师'
prompt_tran='请将给你的一组文本全部翻译成连贯流畅的中文,一组文本主要有三部分待翻译:text1:文本1 text2:文本2 text3:文本3。然后你需要将其翻译并按照json格式输出:{"tran_text1":"将用户输入的文本翻译成中文的文本","tran_text2":"将gpt改写文本翻译成中文的文本","tran_text3":"将gpt改写的文本翻译成中文的文本"},下面是你要翻译的文本:"""{Q1}"""'
transques="text1:{} text2:{} text3:{}".format(ques,gptText,gptText2)
for i in range(2):
try:
transCn = openai.ChatCompletion.create(
# model="gpt-3.5-turbo",
# model="gpt-4",
model=gptVersion,
messages=[{"role": "system", "content": systemTran}, {"role": "user", "content": prompt_tran.replace('{Q1}',transques)}],
temperature=temperature,
timeout=30
)
transCnText=json.loads(transCn['choices'][0]['message']['content'])
extData.append(transCnText)
break
except Exception as e:
print('error:'+str(e))
pass
if Checkbox == 'test2':
systemTran='你是一个对中文和日语非常了解的翻译官'
prompt_tran='在不改变原意的情况下,请将给你的文本翻译成中文,下面是你要翻译的文本:'
transCn = openai.ChatCompletion.create(
# model="gpt-3.5-turbo",
# model="gpt-4",
model=gptVersion,
messages=[{"role": "system", "content": systemTran}, {"role": "user", "content": prompt_tran+ques}],
temperature=temperature)
transCnText=transCn['choices'][0]['message']['content']
extData.append(transCnText)
return systemPrompt, ques, completion['choices'][0]['message']['content'], FineTunecompletion['choices'][0]['message']['content'],extData
def Chat(systemPrompt,ques,gptVersion,temperature):
completion = openai.ChatCompletion.create(
# model="gpt-3.5-turbo",
# model="gpt-4",
model=gptVersion,
messages=[{"role": "system", "content": systemPrompt}, {"role": "user", "content": ques}],
temperature=temperature)
return completion['choices'][0]['message']['content']
def ChatDemo():
systemText = """You are Japanese large language model trained by simejiAI. Your task is to understand the meaning of what I provide and rewrite text into Japanese with cute and interesting expressions, Write some cute elements into this and add some kaomojis and emojis. Keep sentence within 200 characters and make it one-line. If you encounter any pornographic or violent malicious content, you need to refuse to answer or mercilessly counterattack.
You should not include any additional information or modify the original meaning.
Please note that the text should not involve any dialogue and the rewritten version will not include any responses. Just give one rewriting text. """
quesText = "ごめん寝てた"
ques=Chat(systemText,quesText)
print(ques)
def AI_Produst(systemText,quesList,gptVersion,temperature,num,outputPath,progress):
progress(0, desc="Starting...")
wb=openpyxl.Workbook()
ws=wb.active
ws.append(["System",'User','GPT_Output'])
maxNum=min(num,len(quesList))
with concurrent.futures.ThreadPoolExecutor(max_workers=4) as excutor:
futures=[]
for i in range(maxNum):
params=systemText,quesList[i],gptVersion,temperature
task=excutor.submit(ChatV2,params)
futures.append(task)
prad=tqdm(total=len(futures))
for futrue in concurrent.futures.as_completed(futures):
prad.update(1)
systemPrompt,ques,GPTAnswer=futrue.result()
print(systemPrompt)
print(ques)
ws.append([systemPrompt,ques,GPTAnswer])
prad.close()
wb.save(outputPath)
return outputPath
def AI_Produst_estimate(systemText,prompt,quesList,gptVersion,inetuneGptVersion,temperature,num,outputPath,Checkbox,progress):
global stopFlag
stopFlag=False
progress(0, desc="Starting...")
wb=openpyxl.Workbook()
ws=wb.active
ws.append(["System",'User','GPT_Output','是否合格','FineTune GPT_Output','是否合格','Tran_User','Tran_GPT_Output','Tran_FineTune GPT_Output'])
maxNum=min(num,len(quesList))
print('最大数字'+str(maxNum))
with concurrent.futures.ThreadPoolExecutor(max_workers=4) as excutor:
futures=[]
for i in range(maxNum):
params=systemText,prompt,quesList[i],gptVersion,inetuneGptVersion,temperature,Checkbox
task=excutor.submit(ChatV2_estimate,params)
futures.append(task)
prad=tqdm(total=len(futures))
for futrue in concurrent.futures.as_completed(futures):
if stopFlag:
break
try:
prad.update(1)
try:
systemPrompt,ques,GPTAnswer,FineTuneGPTAnswer,exdata=futrue.result(timeout=30)
except Exception as e:
print('如果本次请求异常则自动退出')
ws.append([systemPrompt,ques,'',str(e),''])
continue
#print(systemPrompt)
print(ques)
if len(exdata)==1:
try:
translate=exdata[0]
#加入翻译
ws.append([systemPrompt,ques,GPTAnswer,'',FineTuneGPTAnswer,'',translate['tran_text1'],translate['tran_text2'],translate['tran_text3']])
except Exception as e:
ws.append([systemPrompt, ques, GPTAnswer, '', FineTuneGPTAnswer])
print('error:'+str(e))
print(exdata[0])
else:
ws.append([systemPrompt,ques,GPTAnswer,'',FineTuneGPTAnswer])
except:
time.sleep(10)
prad.close()
wb.save(outputPath)
return outputPath
def AIProdustDemo():
outputPath=r'E:\renpyExcu\bigLLM\text.xlsx'
num=10
temperature=0.6
gptVersion='gpt-3.5-turbo'
quesList=[]
book=openpyxl.load_workbook(r'E:\renpyExcu\bigLLM\testData.xlsx')
sheet=book.active
maxnum=sheet.max_row
for i in range(2,maxnum+1):
quesList.append(sheet.cell(i,1).value)
systemText = """You are Japanese large language model trained by simejiAI. Your task is to understand the meaning of what I provide and rewrite text into Japanese with cute and interesting expressions, Write some cute elements into this and add some kaomojis and emojis. Keep sentence within 200 characters and make it one-line. If you encounter any pornographic or violent malicious content, you need to refuse to answer or mercilessly counterattack.
You should not include any additional information or modify the original meaning.
Please note that the text should not involve any dialogue and the rewritten version will not include any responses. Just give one rewriting text. """
AI_Produst(systemText,quesList,gptVersion,temperature,num,outputPath)
def AIProdust_batch(systemText,prompt,inputFile,textInput_APIKEY,temperature,gptVersion,num,progress=gr.Progress(track_tqdm=True)):
openai.api_key=textInput_APIKEY
inputFile=inputFile.name
nowTime=str(datetime.datetime.now()).split('.')[0].replace(' ','_').replace(':','_')
outputPath="{}/{}_{}_{}_{}".format(os.path.dirname(inputFile),num,nowTime,gptVersion,os.path.basename(inputFile))
print(inputFile)
num=int(num)
quesList=[]
book=openpyxl.load_workbook(inputFile)
sheet=book.active
maxnum=sheet.max_row
for i in range(2,maxnum+1):
quesList.append(prompt+sheet.cell(i,1).value)
AI_Produst(systemText,quesList,gptVersion,temperature,num,outputPath,progress)
return outputPath
def AIProdust_batch_estimate(systemText,prompt,inputFile,textInput_APIKEY,temperature,gptVersion,fintuneGPTVersion,num,Checkbox,progress=gr.Progress(track_tqdm=True)):
openai.api_key=textInput_APIKEY
inputFile=inputFile.name
nowTime=str(datetime.datetime.now()).split('.')[0].replace(' ','_').replace(':','_')
outputPath="{}/{}_{}_{}_{}".format(os.path.dirname(inputFile),num,nowTime,gptVersion,os.path.basename(inputFile))
print(inputFile)
num=int(num)
quesList=[]
book=openpyxl.load_workbook(inputFile)
sheet=book.active
maxnum=sheet.max_row
for i in range(2,maxnum+1):
if sheet.cell(i,1).value is not None:
ques=str.strip(sheet.cell(i,1).value)
if len(ques)!=0:
quesList.append(ques)
AI_Produst_estimate(systemText,prompt,quesList,gptVersion,fintuneGPTVersion,temperature,num,outputPath,Checkbox,progress)
return outputPath
def Lines2Excel(lines):
global tmpdir
nowTime = str(datetime.datetime.now()).split('.')[0].replace(' ', '_').replace(':', '_')
outputPath=os.path.join(tmpdir,nowTime+'_temp.xlsx')
print(outputPath)
wb=openpyxl.Workbook()
ws=wb.active
ws.append(['input'])
lines=lines.split('\n')
lines = [line for line in lines if len(str.strip(line))>0]
for line in lines:
ws.append([line])
wb.save(outputPath)
return outputPath
def stopprodust():
global stopFlag
stopFlag=True
return stopFlag
def AIProdust():
global tmpdir
GPTVersion = ['gpt-4', 'gpt-3.5-turbo', 'gpt-3.5-turbo-0301', 'gpt-3.5-turbo-0613', 'gpt-3.5-turbo-16k',
'gpt-3.5-turbo-16k-0613']
with tempfile.TemporaryDirectory(dir='.') as tmpdir:
with gr.Blocks() as demo:
gr.Markdown('# GPT3.5 Fine Tune 可视化系统')
gr.Markdown('GPT3.5 Fine Tune 可视化系统')
with gr.Tab('多行文本转Excel文件'):
textInput_Ques = gr.Textbox(label='Lines2Excel', lines=2, placeholder='多行输入,一个输入一行...')
outPutFile=gr.components.File(label="下载文件")
button_tran=gr.Button("开始转化")
button_tran.click(Lines2Excel,inputs=textInput_Ques,outputs=outPutFile)
with gr.Tab('批量请求GPT'):
textInput_Sys = gr.Textbox(label='SystemMessage', lines=2,placeholder='...')
textInput_Prompt = gr.Textbox(label='Prompt', lines=2, placeholder='...')
input_ExcelFile=gr.components.File(label="待批量请求的文件")
textInput_APIKEY = gr.Textbox(label='OpenAI_APIKEY', lines=2, placeholder='...')
drop = gr.components.Dropdown(label="GPTVersion", choices=GPTVersion,
value='gpt-3.5-turbo')
slider = gr.components.Slider(0, 1, label="Temperature", step=None, value=0.7)
num=gr.Number(label='请求的次数',value=5)
outPutFile = gr.components.File(label="下载文件")
button_ques = gr.Button("开始请求")
button_ques.click(AIProdust_batch, inputs=[textInput_Sys,textInput_Prompt,input_ExcelFile,textInput_APIKEY,slider,drop,num], outputs=outPutFile)
with gr.Tab('微调数据格式化'):
gr.Markdown('### 微调数据格式化模块')
input_ExcelFile = gr.components.File(label="待执行格式化的文件")
drop = gr.components.Dropdown(label="GPTVersion", choices=GPTVersion,
value='gpt-3.5-turbo')
outPutFile = gr.components.File(label="gpt微调数据集")
outPutResText = gr.Textbox(label="格式化结果",lines=2,placeholder='...')
button_format = gr.Button("开始格式化")
button_format.click(DataFormat,
inputs=[input_ExcelFile, drop],
outputs=[outPutFile,outPutResText])
gr.Markdown('<br><br>')
gr.Markdown('### 字符串token计算模块')
input_text = gr.Textbox(label="待计算Tokens的字符串", lines=2, placeholder='...')
outPuttoken= gr.Number(label="token计算结果")
button_cal = gr.Button("开始计算")
button_cal.click(GetTokenforStr,
inputs=input_text,
outputs=outPuttoken)
with gr.Tab('微调数据集上传至OpenAI'):
gr.Markdown("注:Fine Tune至少需要10个case")
input_FineTuningFile=gr.components.File(label="gpt微调数据集",file_count='multiple')
input_APIKey=gr.Textbox(label="Openai_APIKEY",lines=2,placeholder='...')
output_FileTuningFile=gr.Json(label='上传文件状态')
button_updata=gr.Button('开始上传')
button_updata.click(uploadData.upData_OpenAI,
inputs=[input_FineTuningFile,input_APIKey],
outputs=output_FileTuningFile)
gr.Markdown("注:后续训练需要提供要微调的数据集的ID,如:file-ZnJlydArU8******NKzWaf8d")
with gr.Tab('启动微调Task'):
input_DataId = gr.Textbox(label="FineTune DataId", lines=2, placeholder='...')
input_APIKey = gr.Textbox(label="Openai_APIKEY", lines=2, placeholder='...')
output_CreateTaskjson = gr.Json(label='创建微调任务状态')
button_createTask = gr.Button('开始创建')
button_createTask.click(uploadData.createTask,
inputs=[input_DataId, input_APIKey],
outputs=output_CreateTaskjson)
gr.Markdown("注:只有等上一轮任务执行完毕,你才能创建新的微调任务")
gr.Markdown("<br><br>")
gr.Markdown("### APIKey创建的微调任务状态查询'")
input_APIKey = gr.Textbox(label="Openai_APIKEY", lines=2, placeholder='...')
button_createTask = gr.Button('微调状态查询')
output_TaskSatejson = gr.Json(label='创建微调任务状态')
button_createTask.click(uploadData.GetFineTuningJobState,
inputs=[input_APIKey],
outputs=output_TaskSatejson)
with gr.Tab('Finetune Model测试'):
textInput_Sys1 = gr.Textbox(label='SystemMessage', lines=2, placeholder='...')
textInput_Prompt1 = gr.Textbox(label='Prompt_ques', lines=2, placeholder='...')
input_fine_tuned_model = gr.Textbox(label='fine_tuned_model', lines=2, placeholder='...')
textInput_APIKEY = gr.Textbox(label='OpenAI_APIKEY', lines=2, placeholder='...')
outPutText = gr.Textbox(label="运行结果",lines=2, placeholder='...')
button_ques = gr.Button("开始请求")
button_ques.click(uploadData.userFineTuneLLM,
inputs=[textInput_Sys1, textInput_Prompt1, input_fine_tuned_model, textInput_APIKEY], outputs=outPutText)
with gr.Tab('Finetune Model 效果评估'):
fintunetextInput_Sys = gr.Textbox(label='SystemMessage', lines=2, placeholder='...')
fintunetextInput_Prompt = gr.Textbox(label='Prompt', lines=2, placeholder='...')
fintuneinput_ExcelFile = gr.components.File(label="待批量请求的文件")
textInput_APIKEY = gr.Textbox(label='OpenAI_APIKEY', lines=2, placeholder='...')
fintunedrop = gr.components.Dropdown(label="GPTVersion", choices=GPTVersion,
value='gpt-3.5-turbo')
fintuneGPTVersion=gr.Textbox(label='FineTune_GPTVersion', lines=2, placeholder='...')
fintuneslider = gr.components.Slider(0, 1, label="Temperature", step=None, value=0.7)
fintunenum = gr.Number(label='请求的次数', value=5)
Checkbox=gr.CheckboxGroup(["GPT生成结果翻译成中文", "文本语法解析(暂不支持)"], label="GPT额外功能", info="为了提高审核速度你要增加什么?")
fintuneoutPutFile = gr.components.File(label="下载文件")
fintunebutton_ques = gr.Button("开始请求")
fintunebutton_ques.click(AIProdust_batch_estimate,
inputs=[fintunetextInput_Sys, fintunetextInput_Prompt, fintuneinput_ExcelFile, textInput_APIKEY, fintuneslider,
fintunedrop,fintuneGPTVersion, fintunenum,Checkbox], outputs=fintuneoutPutFile)
fintunebutton_quesStop = gr.Button("终止运行")
fintunebutton_quesStop.click(stopprodust,outputs=gr.Textbox(label='状态'))
gr.Markdown("<br><br>")
gr.Markdown("### APIKey创建的微调任务状态查询'")
input_APIKey = gr.Textbox(label="Openai_APIKEY", lines=2, placeholder='...')
button_createTask = gr.Button('微调任务查询')
output_TaskSatejson = gr.Json(label='查询微调任务状态')
button_createTask.click(uploadData.GetFineTuningJobState,
inputs=[input_APIKey],
outputs=output_TaskSatejson)
demo.queue().launch(share=True)
if __name__=="__main__":
# ChatDemo()
# AIProdustDemo() #AIGC 批量生成内容并加在Excel文件
#
AIProdust()
|