File size: 6,136 Bytes
c254ac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import gradio as gr
import cv2
import tempfile
import torch
from ultralytics import YOLOv10

# 检查是否有 GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

def yolov10_inference(image, video, model_id, image_size, conf_threshold):
    model = YOLOv10.from_pretrained(f'jameslahm/{model_id}')
    model = model.to(device)  # 将模型移到 GPU

    if image:
        # 将图像数据转移到 GPU
        image = image.to(device)

        # 进行推理
        results = model.predict(source=image, imgsz=image_size, conf=conf_threshold)
        annotated_image = results[0].plot()

        # 返回注释过的图像
        return annotated_image[:, :, ::-1], None
    else:
        video_path = tempfile.mktemp(suffix=".webm")
        with open(video_path, "wb") as f:
            with open(video, "rb") as g:
                f.write(g.read())

        cap = cv2.VideoCapture(video_path)
        fps = cap.get(cv2.CAP_PROP_FPS)
        frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

        output_video_path = tempfile.mktemp(suffix=".webm")
        out = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*'vp80'), fps, (frame_width, frame_height))

        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break

            # 将视频帧转移到 GPU
            frame = torch.from_numpy(frame).float().to(device)

            results = model.predict(source=frame, imgsz=image_size, conf=conf_threshold)
            annotated_frame = results[0].plot()
            out.write(annotated_frame)

        cap.release()
        out.release()

        return None, output_video_path

def yolov10_inference_for_examples(image, model_path, image_size, conf_threshold):
    annotated_image, _ = yolov10_inference(image, None, model_path, image_size, conf_threshold)
    return annotated_image

def app():
    with gr.Blocks():
        with gr.Row():
            with gr.Column():
                image = gr.Image(type="pil", label="Image", visible=True)
                video = gr.Video(label="Video", visible=False)
                input_type = gr.Radio(
                    choices=["Image", "Video"],
                    value="Image",
                    label="Input Type",
                )
                model_id = gr.Dropdown(
                    label="Model",
                    choices=[
                        "yolov10n",
                        "yolov10s",
                        "yolov10m",
                        "yolov10b",
                        "yolov10l",
                        "yolov10x",
                    ],
                    value="yolov10m",
                )
                image_size = gr.Slider(
                    label="Image Size",
                    minimum=320,
                    maximum=1280,
                    step=32,
                    value=640,
                )
                conf_threshold = gr.Slider(
                    label="Confidence Threshold",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.05,
                    value=0.25,
                )
                yolov10_infer = gr.Button(value="Detect Objects")

            with gr.Column():
                output_image = gr.Image(type="numpy", label="Annotated Image", visible=True)
                output_video = gr.Video(label="Annotated Video", visible=False)

        def update_visibility(input_type):
            image = gr.update(visible=True) if input_type == "Image" else gr.update(visible=False)
            video = gr.update(visible=False) if input_type == "Image" else gr.update(visible=True)
            output_image = gr.update(visible=True) if input_type == "Image" else gr.update(visible=False)
            output_video = gr.update(visible=False) if input_type == "Image" else gr.update(visible=True)

            return image, video, output_image, output_video

        input_type.change(
            fn=update_visibility,
            inputs=[input_type],
            outputs=[image, video, output_image, output_video],
        )

        def run_inference(image, video, model_id, image_size, conf_threshold, input_type):
            if input_type == "Image":
                return yolov10_inference(image, None, model_id, image_size, conf_threshold)
            else:
                return yolov10_inference(None, video, model_id, image_size, conf_threshold)

        yolov10_infer.click(
            fn=run_inference,
            inputs=[image, video, model_id, image_size, conf_threshold, input_type],
            outputs=[output_image, output_video],
        )

        gr.Examples(
            examples=[
                [
                    "ultralytics/assets/bus.jpg",
                    "yolov10s",
                    640,
                    0.25,
                ],
                [
                    "ultralytics/assets/zidane.jpg",
                    "yolov10s",
                    640,
                    0.25,
                ],
            ],
            fn=yolov10_inference_for_examples,
            inputs=[
                image,
                model_id,
                image_size,
                conf_threshold,
            ],
            outputs=[output_image],
            cache_examples='lazy',
        )

gradio_app = gr.Blocks()
with gradio_app:
    gr.HTML(
        """

    <h1 style='text-align: center'>

    YOLOv10: Real-Time End-to-End Object Detection

    </h1>

    """)
    gr.HTML(
        """

        <h3 style='text-align: center'>

        <a href='https://arxiv.org/abs/2405.14458' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a>

        </h3>

        """)
    with gr.Row():
        with gr.Column():
            app()
if __name__ == '__main__':
    gradio_app.launch(share=True)