File size: 5,334 Bytes
c254ac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
---

comments: true
description: Distance Calculation Using Ultralytics YOLOv8
keywords: Ultralytics, YOLOv8, Object Detection, Distance Calculation, Object Tracking, Notebook, IPython Kernel, CLI, Python SDK
---


# Distance Calculation using Ultralytics YOLOv8 🚀

## What is Distance Calculation?

Measuring the gap between two objects is known as distance calculation within a specified space. In the case of [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics), the bounding box centroid is employed to calculate the distance for bounding boxes highlighted by the user.

<p align="center">
  <br>
  <iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/LE8am1QoVn4"

    title="YouTube video player" frameborder="0"

    allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"

    allowfullscreen>
  </iframe>
  <br>
  <strong>Watch:</strong> Distance Calculation using Ultralytics YOLOv8
</p>

## Visuals

|                                                  Distance Calculation using Ultralytics YOLOv8                                                  |                                                                
|:-----------------------------------------------------------------------------------------------------------------------------------------------:|
| ![Ultralytics YOLOv8 Distance Calculation](https://github.com/RizwanMunawar/RizwanMunawar/assets/62513924/6b6b735d-3c49-4b84-a022-2bf6e3c72f8b) |

## Advantages of Distance Calculation?

- **Localization Precision:** Enhances accurate spatial positioning in computer vision tasks.
- **Size Estimation:** Allows estimation of physical sizes for better contextual understanding.
- **Scene Understanding:** Contributes to a 3D understanding of the environment for improved decision-making.

???+ tip "Distance Calculation"

    - Click on any two bounding boxes with Left Mouse click for distance calculation

!!! Example "Distance Calculation using YOLOv8 Example"

    === "Video Stream"


        ```python

        from ultralytics import YOLO

        from ultralytics.solutions import distance_calculation

        import cv2


        model = YOLO("yolov8n.pt")

        names = model.model.names


        cap = cv2.VideoCapture("path/to/video/file.mp4")

        assert cap.isOpened(), "Error reading video file"

        w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))


        # Video writer

        video_writer = cv2.VideoWriter("distance_calculation.avi",

                                       cv2.VideoWriter_fourcc(*'mp4v'),

                                       fps,

                                       (w, h))


        # Init distance-calculation obj

        dist_obj = distance_calculation.DistanceCalculation()

        dist_obj.set_args(names=names, view_img=True)


        while cap.isOpened():

            success, im0 = cap.read()

            if not success:

                print("Video frame is empty or video processing has been successfully completed.")

                break


            tracks = model.track(im0, persist=True, show=False)

            im0 = dist_obj.start_process(im0, tracks)

            video_writer.write(im0)


        cap.release()

        video_writer.release()

        cv2.destroyAllWindows()


        ```


???+ tip "Note"

    - Mouse Right Click will delete all drawn points
    - Mouse Left Click can be used to draw points

### Optional Arguments `set_args`



| Name             | Type   | Default         | Description                                            |

|------------------|--------|-----------------|--------------------------------------------------------|

| `names`          | `dict` | `None`          | Classes names                                          |

| `view_img`       | `bool` | `False`         | Display frames with counts                             |
| `line_thickness` | `int`  | `2`             | Increase bounding boxes thickness                      |
| `line_color`     | `RGB`  | `(255, 255, 0)` | Line Color for centroids mapping on two bounding boxes |
| `centroid_color` | `RGB`  | `(255, 0, 255)` | Centroid color for each bounding box                   |

### Arguments `model.track`

| Name      | Type    | Default        | Description                                                 |
|-----------|---------|----------------|-------------------------------------------------------------|
| `source`  | `im0`   | `None`         | source directory for images or videos                       |
| `persist` | `bool`  | `False`        | persisting tracks between frames                            |
| `tracker` | `str`   | `botsort.yaml` | Tracking method 'bytetrack' or 'botsort'                    |
| `conf`    | `float` | `0.3`          | Confidence Threshold                                        |
| `iou`     | `float` | `0.5`          | IOU Threshold                                               |
| `classes` | `list`  | `None`         | filter results by class, i.e. classes=0, or classes=[0,2,3] |
| `verbose` | `bool`  | `True`         | Display the object tracking results                         |