File size: 6,306 Bytes
c254ac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
---

comments: true
description: Security Alarm System Project Using Ultralytics YOLOv8. Learn How to implement a Security Alarm System Using ultralytics YOLOv8
keywords: Object Detection, Security Alarm, Object Tracking, YOLOv8, Computer Vision Projects
---


# Security Alarm System Project Using Ultralytics YOLOv8

<img src="https://github.com/RizwanMunawar/ultralytics/assets/62513924/f4e4a613-fb25-4bd0-9ec5-78352ddb62bd" alt="Security Alarm System">

The Security Alarm System Project utilizing Ultralytics YOLOv8 integrates advanced computer vision capabilities to enhance security measures. YOLOv8, developed by Ultralytics, provides real-time object detection, allowing the system to identify and respond to potential security threats promptly. This project offers several advantages:

- **Real-time Detection:** YOLOv8's efficiency enables the Security Alarm System to detect and respond to security incidents in real-time, minimizing response time.
- **Accuracy:** YOLOv8 is known for its accuracy in object detection, reducing false positives and enhancing the reliability of the security alarm system.
- **Integration Capabilities:** The project can be seamlessly integrated with existing security infrastructure, providing an upgraded layer of intelligent surveillance.

<p align="center">
  <br>
  <iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/_1CmwUzoxY4"

    title="YouTube video player" frameborder="0"

    allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"

    allowfullscreen>
  </iframe>
  <br>
  <strong>Watch:</strong> Security Alarm System Project with Ultralytics YOLOv8 Object Detection
</p>

### Code

#### Import Libraries

```python

import torch

import numpy as np

import cv2

from time import time

from ultralytics import YOLO

from ultralytics.utils.plotting import Annotator, colors

import smtplib

from email.mime.multipart import MIMEMultipart

from email.mime.text import MIMEText

```

#### Set up the parameters of the message

???+ tip "Note"

    App Password Generation is necessary


- Navigate to [App Password Generator](https://myaccount.google.com/apppasswords), designate an app name such as "security project," and obtain a 16-digit password. Copy this password and paste it into the designated password field as instructed.

```python

password = ""

from_email = ""  # must match the email used to generate the password

to_email = ""  # receiver email

```

#### Server creation and authentication

```python

server = smtplib.SMTP('smtp.gmail.com: 587')

server.starttls()

server.login(from_email, password)

```

#### Email Send Function

```python

def send_email(to_email, from_email, object_detected=1):

    message = MIMEMultipart()

    message['From'] = from_email

    message['To'] = to_email

    message['Subject'] = "Security Alert"

    # Add in the message body

    message_body = f'ALERT - {object_detected} objects has been detected!!'



    message.attach(MIMEText(message_body, 'plain'))

    server.sendmail(from_email, to_email, message.as_string())

```

#### Object Detection and Alert Sender

```python

class ObjectDetection:

    def __init__(self, capture_index):

        # default parameters

        self.capture_index = capture_index

        self.email_sent = False



        # model information

        self.model = YOLO("yolov8n.pt")



        # visual information

        self.annotator = None

        self.start_time = 0

        self.end_time = 0



        # device information

        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'



    def predict(self, im0):

        results = self.model(im0)

        return results



    def display_fps(self, im0):

        self.end_time = time()

        fps = 1 / np.round(self.end_time - self.start_time, 2)

        text = f'FPS: {int(fps)}'

        text_size = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 1.0, 2)[0]

        gap = 10

        cv2.rectangle(im0, (20 - gap, 70 - text_size[1] - gap), (20 + text_size[0] + gap, 70 + gap), (255, 255, 255), -1)

        cv2.putText(im0, text, (20, 70), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0), 2)



    def plot_bboxes(self, results, im0):

        class_ids = []

        self.annotator = Annotator(im0, 3, results[0].names)

        boxes = results[0].boxes.xyxy.cpu()

        clss = results[0].boxes.cls.cpu().tolist()

        names = results[0].names

        for box, cls in zip(boxes, clss):

            class_ids.append(cls)

            self.annotator.box_label(box, label=names[int(cls)], color=colors(int(cls), True))

        return im0, class_ids



    def __call__(self):

        cap = cv2.VideoCapture(self.capture_index)

        assert cap.isOpened()

        cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)

        cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)

        frame_count = 0

        while True:

            self.start_time = time()

            ret, im0 = cap.read()

            assert ret

            results = self.predict(im0)

            im0, class_ids = self.plot_bboxes(results, im0)



            if len(class_ids) > 0:  # Only send email If not sent before

                if not self.email_sent:

                    send_email(to_email, from_email, len(class_ids))

                    self.email_sent = True

            else:

                self.email_sent = False



            self.display_fps(im0)

            cv2.imshow('YOLOv8 Detection', im0)

            frame_count += 1

            if cv2.waitKey(5) & 0xFF == 27:

                break

        cap.release()

        cv2.destroyAllWindows()

        server.quit()

```

#### Call the Object Detection class and Run the Inference

```python

detector = ObjectDetection(capture_index=0)

detector()

```

That's it! When you execute the code, you'll receive a single notification on your email if any object is detected. The notification is sent immediately, not repeatedly. However, feel free to customize the code to suit your project requirements.

#### Email Received Sample

<img width="256" src="https://github.com/RizwanMunawar/ultralytics/assets/62513924/db79ccc6-aabd-4566-a825-b34e679c90f9" alt="Email Received Sample">