File size: 9,744 Bytes
c254ac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
---

comments: true
description: Workouts Monitoring Using Ultralytics YOLOv8
keywords: Ultralytics, YOLOv8, Object Detection, Pose Estimation, PushUps, PullUps, Ab workouts, Notebook, IPython Kernel, CLI, Python SDK
---


# Workouts Monitoring using Ultralytics YOLOv8 🚀

Monitoring workouts through pose estimation with [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) enhances exercise assessment by accurately tracking key body landmarks and joints in real-time. This technology provides instant feedback on exercise form, tracks workout routines, and measures performance metrics, optimizing training sessions for users and trainers alike.

## Advantages of Workouts Monitoring?

- **Optimized Performance:** Tailoring workouts based on monitoring data for better results.
- **Goal Achievement:** Track and adjust fitness goals for measurable progress.
- **Personalization:** Customized workout plans based on individual data for effectiveness.
- **Health Awareness:** Early detection of patterns indicating health issues or over-training.
- **Informed Decisions:** Data-driven decisions for adjusting routines and setting realistic goals.

## Real World Applications

|                                                  Workouts Monitoring                                                   |                                                  Workouts Monitoring                                                   |
|:----------------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------------:|
| ![PushUps Counting](https://github.com/RizwanMunawar/ultralytics/assets/62513924/cf016a41-589f-420f-8a8c-2cc8174a16de) | ![PullUps Counting](https://github.com/RizwanMunawar/ultralytics/assets/62513924/cb20f316-fac2-4330-8445-dcf5ffebe329) |
|                                                    PushUps Counting                                                    |                                                    PullUps Counting                                                    |

!!! Example "Workouts Monitoring Example"

    === "Workouts Monitoring"


        ```python

        from ultralytics import YOLO

        from ultralytics.solutions import ai_gym

        import cv2


        model = YOLO("yolov8n-pose.pt")

        cap = cv2.VideoCapture("path/to/video/file.mp4")

        assert cap.isOpened(), "Error reading video file"

        w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))


        gym_object = ai_gym.AIGym()  # init AI GYM module

        gym_object.set_args(line_thickness=2,

                            view_img=True,

                            pose_type="pushup",

                            kpts_to_check=[6, 8, 10])


        frame_count = 0

        while cap.isOpened():

            success, im0 = cap.read()

            if not success:

              print("Video frame is empty or video processing has been successfully completed.")

              break

            frame_count += 1

            results = model.track(im0, verbose=False)  # Tracking recommended

            #results = model.predict(im0)  # Prediction also supported

            im0 = gym_object.start_counting(im0, results, frame_count)


        cv2.destroyAllWindows()

        ```


    === "Workouts Monitoring with Save Output"


        ```python

        from ultralytics import YOLO

        from ultralytics.solutions import ai_gym

        import cv2


        model = YOLO("yolov8n-pose.pt")

        cap = cv2.VideoCapture("path/to/video/file.mp4")

        assert cap.isOpened(), "Error reading video file"

        w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))


        video_writer = cv2.VideoWriter("workouts.avi",

                                        cv2.VideoWriter_fourcc(*'mp4v'),

                                        fps,

                                        (w, h))


        gym_object = ai_gym.AIGym()  # init AI GYM module

        gym_object.set_args(line_thickness=2,

                            view_img=True,

                            pose_type="pushup",

                            kpts_to_check=[6, 8, 10])


        frame_count = 0

        while cap.isOpened():

            success, im0 = cap.read()

            if not success:

              print("Video frame is empty or video processing has been successfully completed.")

              break

            frame_count += 1

            results = model.track(im0, verbose=False)  # Tracking recommended

            #results = model.predict(im0)  # Prediction also supported

            im0 = gym_object.start_counting(im0, results, frame_count)

            video_writer.write(im0)


        cv2.destroyAllWindows()

        video_writer.release()

        ```


???+ tip "Support"

    "pushup", "pullup" and "abworkout" supported


### KeyPoints Map

![keyPoints Order Ultralytics YOLOv8 Pose](https://github.com/ultralytics/ultralytics/assets/62513924/f45d8315-b59f-47b7-b9c8-c61af1ce865b)

### Arguments `set_args`



| Name              | Type   | Default  | Description                                                                            |

|-------------------|--------|----------|----------------------------------------------------------------------------------------|

| `kpts_to_check`   | `list` | `None`   | List of three keypoints index, for counting specific workout, followed by keypoint Map |

| `view_img`        | `bool` | `False`  | Display the frame with counts                                                          |
| `line_thickness`  | `int`  | `2`      | Increase the thickness of count value                                                  |
| `pose_type`       | `str`  | `pushup` | Pose that need to be monitored, `pullup` and `abworkout` also supported                |
| `pose_up_angle`   | `int`  | `145`    | Pose Up Angle value                                                                    |
| `pose_down_angle` | `int`  | `90`     | Pose Down Angle value                                                                  |

### Arguments `model.predict`

| Name            | Type           | Default                | Description                                                                |
|-----------------|----------------|------------------------|----------------------------------------------------------------------------|
| `source`        | `str`          | `'ultralytics/assets'` | source directory for images or videos                                      |
| `conf`          | `float`        | `0.25`                 | object confidence threshold for detection                                  |
| `iou`           | `float`        | `0.7`                  | intersection over union (IoU) threshold for NMS                            |
| `imgsz`         | `int or tuple` | `640`                  | image size as scalar or (h, w) list, i.e. (640, 480)                       |
| `half`          | `bool`         | `False`                | use half precision (FP16)                                                  |
| `device`        | `None or str`  | `None`                 | device to run on, i.e. cuda device=0/1/2/3 or device=cpu                   |
| `max_det`       | `int`          | `300`                  | maximum number of detections per image                                     |
| `vid_stride`    | `bool`         | `False`                | video frame-rate stride                                                    |
| `stream_buffer` | `bool`         | `False`                | buffer all streaming frames (True) or return the most recent frame (False) |
| `visualize`     | `bool`         | `False`                | visualize model features                                                   |
| `augment`       | `bool`         | `False`                | apply image augmentation to prediction sources                             |
| `agnostic_nms`  | `bool`         | `False`                | class-agnostic NMS                                                         |
| `classes`       | `list[int]`    | `None`                 | filter results by class, i.e. classes=0, or classes=[0,2,3]                |
| `retina_masks`  | `bool`         | `False`                | use high-resolution segmentation masks                                     |
| `embed`         | `list[int]`    | `None`                 | return feature vectors/embeddings from given layers                        |

### Arguments `model.track`

| Name      | Type    | Default        | Description                                                 |
|-----------|---------|----------------|-------------------------------------------------------------|
| `source`  | `im0`   | `None`         | source directory for images or videos                       |
| `persist` | `bool`  | `False`        | persisting tracks between frames                            |
| `tracker` | `str`   | `botsort.yaml` | Tracking method 'bytetrack' or 'botsort'                    |
| `conf`    | `float` | `0.3`          | Confidence Threshold                                        |
| `iou`     | `float` | `0.5`          | IOU Threshold                                               |
| `classes` | `list`  | `None`         | filter results by class, i.e. classes=0, or classes=[0,2,3] |
| `verbose` | `bool`  | `True`         | Display the object tracking results                         |