File size: 12,279 Bytes
c254ac1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
---
comments: true
description: Learn how to use oriented object detection models with Ultralytics YOLO. Instructions on training, validation, image prediction, and model export.
keywords: yolov8, oriented object detection, Ultralytics, DOTA dataset, rotated object detection, object detection, model training, model validation, image prediction, model export
---
# Oriented Bounding Boxes Object Detection
<!-- obb task poster -->
Oriented object detection goes a step further than object detection and introduce an extra angle to locate objects more accurate in an image.
The output of an oriented object detector is a set of rotated bounding boxes that exactly enclose the objects in the image, along with class labels and confidence scores for each box. Object detection is a good choice when you need to identify objects of interest in a scene, but don't need to know exactly where the object is or its exact shape.
<!-- youtube video link for obb task -->
!!! Tip "Tip"
YOLOv8 OBB models use the `-obb` suffix, i.e. `yolov8n-obb.pt` and are pretrained on [DOTAv1](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/DOTAv1.yaml).
<p align="center">
<br>
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/Z7Z9pHF8wJc"
title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
</iframe>
<br>
<strong>Watch:</strong> Object Detection using Ultralytics YOLOv8 Oriented Bounding Boxes (YOLOv8-OBB)
</p>
## Visual Samples
| Ships Detection using OBB | Vehicle Detection using OBB |
|:-------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------:|
|  |  |
## [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/v8)
YOLOv8 pretrained OBB models are shown here, which are pretrained on the [DOTAv1](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/DOTAv1.yaml) dataset.
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
| Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|----------------------------------------------------------------------------------------------|-----------------------|--------------------|--------------------------------|-------------------------------------|--------------------|-------------------|
| [YOLOv8n-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-obb.pt) | 1024 | 78.0 | 204.77 | 3.57 | 3.1 | 23.3 |
| [YOLOv8s-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-obb.pt) | 1024 | 79.5 | 424.88 | 4.07 | 11.4 | 76.3 |
| [YOLOv8m-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-obb.pt) | 1024 | 80.5 | 763.48 | 7.61 | 26.4 | 208.6 |
| [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-obb.pt) | 1024 | 80.7 | 1278.42 | 11.83 | 44.5 | 433.8 |
| [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-obb.pt) | 1024 | 81.36 | 1759.10 | 13.23 | 69.5 | 676.7 |
- **mAP<sup>test</sup>** values are for single-model multiscale on [DOTAv1 test](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).
- **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
## Train
Train YOLOv8n-obb on the `dota8.yaml` dataset for 100 epochs at image size 640. For a full list of available arguments see the [Configuration](../usage/cfg.md) page.
!!! Example
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n-obb.yaml') # build a new model from YAML
model = YOLO('yolov8n-obb.pt') # load a pretrained model (recommended for training)
model = YOLO('yolov8n-obb.yaml').load('yolov8n.pt') # build from YAML and transfer weights
# Train the model
results = model.train(data='dota8.yaml', epochs=100, imgsz=640)
```
=== "CLI"
```bash
# Build a new model from YAML and start training from scratch
yolo obb train data=dota8.yaml model=yolov8n-obb.yaml epochs=100 imgsz=640
# Start training from a pretrained *.pt model
yolo obb train data=dota8.yaml model=yolov8n-obb.pt epochs=100 imgsz=640
# Build a new model from YAML, transfer pretrained weights to it and start training
yolo obb train data=dota8.yaml model=yolov8n-obb.yaml pretrained=yolov8n-obb.pt epochs=100 imgsz=640
```
### Dataset format
OBB dataset format can be found in detail in the [Dataset Guide](../datasets/obb/index.md).
## Val
Validate trained YOLOv8n-obb model accuracy on the DOTA8 dataset. No argument need to passed as the `model`
retains it's training `data` and arguments as model attributes.
!!! Example
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n-obb.pt') # load an official model
model = YOLO('path/to/best.pt') # load a custom model
# Validate the model
metrics = model.val(data='dota8.yaml') # no arguments needed, dataset and settings remembered
metrics.box.map # map50-95(B)
metrics.box.map50 # map50(B)
metrics.box.map75 # map75(B)
metrics.box.maps # a list contains map50-95(B) of each category
```
=== "CLI"
```bash
yolo obb val model=yolov8n-obb.pt data=dota8.yaml # val official model
yolo obb val model=path/to/best.pt data=path/to/data.yaml # val custom model
```
## Predict
Use a trained YOLOv8n-obb model to run predictions on images.
!!! Example
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n-obb.pt') # load an official model
model = YOLO('path/to/best.pt') # load a custom model
# Predict with the model
results = model('https://ultralytics.com/images/bus.jpg') # predict on an image
```
=== "CLI"
```bash
yolo obb predict model=yolov8n-obb.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model
yolo obb predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # predict with custom model
```
See full `predict` mode details in the [Predict](https://docs.ultralytics.com/modes/predict/) page.
## Export
Export a YOLOv8n-obb model to a different format like ONNX, CoreML, etc.
!!! Example
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n-obb.pt') # load an official model
model = YOLO('path/to/best.pt') # load a custom trained model
# Export the model
model.export(format='onnx')
```
=== "CLI"
```bash
yolo export model=yolov8n-obb.pt format=onnx # export official model
yolo export model=path/to/best.pt format=onnx # export custom trained model
```
Available YOLOv8-obb export formats are in the table below. You can predict or validate directly on exported models, i.e. `yolo predict model=yolov8n-obb.onnx`. Usage examples are shown for your model after export completes.
| Format | `format` Argument | Model | Metadata | Arguments |
|--------------------------------------------------------------------|-------------------|-------------------------------|----------|-----------------------------------------------------|
| [PyTorch](https://pytorch.org/) | - | `yolov8n-obb.pt` | β
| - |
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n-obb.torchscript` | β
| `imgsz`, `optimize` |
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n-obb.onnx` | β
| `imgsz`, `half`, `dynamic`, `simplify`, `opset` |
| [OpenVINO](../integrations/openvino.md) | `openvino` | `yolov8n-obb_openvino_model/` | β
| `imgsz`, `half`, `int8` |
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n-obb.engine` | β
| `imgsz`, `half`, `dynamic`, `simplify`, `workspace` |
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n-obb.mlpackage` | β
| `imgsz`, `half`, `int8`, `nms` |
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n-obb_saved_model/` | β
| `imgsz`, `keras` |
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n-obb.pb` | β | `imgsz` |
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n-obb.tflite` | β
| `imgsz`, `half`, `int8` |
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n-obb_edgetpu.tflite` | β
| `imgsz` |
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n-obb_web_model/` | β
| `imgsz`, `half`, `int8` |
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n-obb_paddle_model/` | β
| `imgsz` |
| [NCNN](https://github.com/Tencent/ncnn) | `ncnn` | `yolov8n-obb_ncnn_model/` | β
| `imgsz`, `half` |
See full `export` details in the [Export](https://docs.ultralytics.com/modes/export/) page.
|