File size: 3,305 Bytes
c254ac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# YOLOv8 OnnxRuntime C++

<img alt="C++" src="https://img.shields.io/badge/C++-17-blue.svg?style=flat&logo=c%2B%2B"> <img alt="Onnx-runtime" src="https://img.shields.io/badge/OnnxRuntime-717272.svg?logo=Onnx&logoColor=white">

This example demonstrates how to perform inference using YOLOv8 in C++ with ONNX Runtime and OpenCV's API.

## Benefits ✨

- Friendly for deployment in the industrial sector.
- Faster than OpenCV's DNN inference on both CPU and GPU.
- Supports FP32 and FP16 CUDA acceleration.

## Note β˜•

1. Benefit for Ultralytics' latest release, a `Transpose` op is added to the YOLOv8 model, while make v8 and v5 has the same output shape. Therefore, you can run inference with YOLOv5/v7/v8 via this project.

## Exporting YOLOv8 Models πŸ“¦

To export YOLOv8 models, use the following Python script:

```python

from ultralytics import YOLO



# Load a YOLOv8 model

model = YOLO("yolov8n.pt")



# Export the model

model.export(format="onnx", opset=12, simplify=True, dynamic=False, imgsz=640)

```

Alternatively, you can use the following command for exporting the model in the terminal

```bash

yolo export model=yolov8n.pt opset=12 simplify=True dynamic=False format=onnx imgsz=640,640

```

## Exporting YOLOv8 FP16 Models πŸ“¦

```python

import onnx

from onnxconverter_common import float16



model = onnx.load(R'YOUR_ONNX_PATH')

model_fp16 = float16.convert_float_to_float16(model)

onnx.save(model_fp16, R'YOUR_FP16_ONNX_PATH')

```

## Download COCO.yaml file πŸ“‚

In order to run example, you also need to download coco.yaml. You can download the file manually from [here](https://raw.githubusercontent.com/ultralytics/ultralytics/main/ultralytics/cfg/datasets/coco.yaml)

## Dependencies βš™οΈ

| Dependency                       | Version        |
| -------------------------------- | -------------- |
| Onnxruntime(linux,windows,macos) | >=1.14.1       |
| OpenCV                           | >=4.0.0        |
| C++ Standard                     | >=17           |
| Cmake                            | >=3.5          |
| Cuda (Optional)                  | >=11.4  \<12.0 |
| cuDNN (Cuda required)            | =8             |

Note: The dependency on C++17 is due to the usage of the C++17 filesystem feature.

Note (2): Due to ONNX Runtime, we need to use CUDA 11 and cuDNN 8. Keep in mind that this requirement might change in the future.

## Build πŸ› οΈ

1. Clone the repository to your local machine.

2. Navigate to the root directory of the repository.

3. Create a build directory and navigate to it:

    ```console

    mkdir build && cd build

    ```


4. Run CMake to generate the build files:

    ```console

    cmake ..

    ```


5. Build the project:

    ```console

    make

    ```


6. The built executable should now be located in the `build` directory.

## Usage πŸš€

```c++

//change your param as you like

//Pay attention to your device and the onnx model type(fp32 or fp16)

DL_INIT_PARAM params;

params.rectConfidenceThreshold = 0.1;

params.iouThreshold = 0.5;

params.modelPath = "yolov8n.onnx";

params.imgSize = { 640, 640 };

params.cudaEnable = true;

params.modelType = YOLO_DETECT_V8;

yoloDetector->CreateSession(params);

Detector(yoloDetector);

```