File size: 1,944 Bytes
c254ac1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
#pragma once
#define RET_OK nullptr
#ifdef _WIN32
#include <Windows.h>
#include <direct.h>
#include <io.h>
#endif
#include <string>
#include <vector>
#include <cstdio>
#include <opencv2/opencv.hpp>
#include "onnxruntime_cxx_api.h"
#ifdef USE_CUDA
#include <cuda_fp16.h>
#endif
enum MODEL_TYPE
{
//FLOAT32 MODEL
YOLO_DETECT_V8 = 1,
YOLO_POSE = 2,
YOLO_CLS = 3,
//FLOAT16 MODEL
YOLO_DETECT_V8_HALF = 4,
YOLO_POSE_V8_HALF = 5,
};
typedef struct _DL_INIT_PARAM
{
std::string modelPath;
MODEL_TYPE modelType = YOLO_DETECT_V8;
std::vector<int> imgSize = { 640, 640 };
float rectConfidenceThreshold = 0.6;
float iouThreshold = 0.5;
int keyPointsNum = 2;//Note:kpt number for pose
bool cudaEnable = false;
int logSeverityLevel = 3;
int intraOpNumThreads = 1;
} DL_INIT_PARAM;
typedef struct _DL_RESULT
{
int classId;
float confidence;
cv::Rect box;
std::vector<cv::Point2f> keyPoints;
} DL_RESULT;
class YOLO_V8
{
public:
YOLO_V8();
~YOLO_V8();
public:
char* CreateSession(DL_INIT_PARAM& iParams);
char* RunSession(cv::Mat& iImg, std::vector<DL_RESULT>& oResult);
char* WarmUpSession();
template<typename N>
char* TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std::vector<int64_t>& inputNodeDims,
std::vector<DL_RESULT>& oResult);
char* PreProcess(cv::Mat& iImg, std::vector<int> iImgSize, cv::Mat& oImg);
std::vector<std::string> classes{};
private:
Ort::Env env;
Ort::Session* session;
bool cudaEnable;
Ort::RunOptions options;
std::vector<const char*> inputNodeNames;
std::vector<const char*> outputNodeNames;
MODEL_TYPE modelType;
std::vector<int> imgSize;
float rectConfidenceThreshold;
float iouThreshold;
float resizeScales;//letterbox scale
};
|