File size: 6,983 Bytes
c254ac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# YOLOv8-ONNXRuntime-Rust for All the Key YOLO Tasks

This repository provides a Rust demo for performing YOLOv8 tasks like `Classification`, `Segmentation`, `Detection` and `Pose Detection` using ONNXRuntime.

## Features

- Support `Classification`, `Segmentation`, `Detection`, `Pose(Keypoints)-Detection` tasks.
- Support `FP16` & `FP32` ONNX models.
- Support `CPU`, `CUDA` and `TensorRT` execution provider to accelerate computation.
- Support dynamic input shapes(`batch`, `width`, `height`).

## Installation

### 1. Install Rust

Please follow the Rust official installation. (https://www.rust-lang.org/tools/install)

### 2. Install ONNXRuntime

This repository use `ort` crate, which is ONNXRuntime wrapper for Rust. (https://docs.rs/ort/latest/ort/)

You can follow the instruction with `ort` doc or simply do this:

- step1: Download ONNXRuntime(https://github.com/microsoft/onnxruntime/releases)
- setp2: Set environment variable `PATH` for linking.

On ubuntu, You can do like this:

```

vim ~/.bashrc



# Add the path of ONNXRUntime lib

export LD_LIBRARY_PATH=/home/qweasd/Documents/onnxruntime-linux-x64-gpu-1.16.3/lib${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}



source ~/.bashrc

```

### 3. \[Optional\] Install CUDA & CuDNN & TensorRT

- CUDA execution provider requires CUDA v11.6+.
- TensorRT execution provider requires CUDA v11.4+ and TensorRT v8.4+.

## Get Started

### 1. Export the YOLOv8 ONNX Models

```bash

pip install -U ultralytics



# export onnx model with dynamic shapes

yolo export model=yolov8m.pt format=onnx  simplify dynamic

yolo export model=yolov8m-cls.pt format=onnx  simplify dynamic

yolo export model=yolov8m-pose.pt format=onnx  simplify dynamic

yolo export model=yolov8m-seg.pt format=onnx  simplify dynamic





# export onnx model with constant shapes

yolo export model=yolov8m.pt format=onnx  simplify

yolo export model=yolov8m-cls.pt format=onnx  simplify

yolo export model=yolov8m-pose.pt format=onnx  simplify

yolo export model=yolov8m-seg.pt format=onnx  simplify

```

### 2. Run Inference

It will perform inference with the ONNX model on the source image.

```

cargo run --release -- --model <MODEL> --source <SOURCE>

```

Set `--cuda` to use CUDA execution provider to speed up inference.

```

cargo run --release -- --cuda --model <MODEL> --source <SOURCE>

```

Set `--trt` to use TensorRT execution provider, and you can set `--fp16` at the same time to use TensorRT FP16 engine.

```

cargo run --release -- --trt --fp16 --model <MODEL> --source <SOURCE>

```

Set `--device_id` to select which device to run. When you have only one GPU, and you set `device_id` to 1 will not cause program panic, the `ort` would automatically fall back to `CPU` EP.

```

cargo run --release -- --cuda --device_id 0 --model <MODEL> --source <SOURCE>

```

Set `--batch` to do multi-batch-size inference.

If you're using `--trt`, you can also set `--batch-min` and `--batch-max` to explicitly specify min/max/opt batch for dynamic batch input.(https://onnxruntime.ai/docs/execution-providers/TensorRT-ExecutionProvider.html#explicit-shape-range-for-dynamic-shape-input).(Note that the ONNX model should exported with dynamic shapes)

```

cargo run --release -- --cuda --batch 2 --model <MODEL> --source <SOURCE>

```

Set `--height` and `--width` to do dynamic image size inference. (Note that the ONNX model should exported with dynamic shapes)

```

cargo run --release -- --cuda --width 480 --height 640 --model <MODEL> --source <SOURCE>

```

Set `--profile` to check time consumed in each stage.(Note that the model usually needs to take 1~3 times dry run to warmup. Make sure to run enough times to evaluate the result.)

```

cargo run --release -- --trt --fp16 --profile --model <MODEL> --source <SOURCE>

```

Results: (yolov8m.onnx, batch=1, 3 times, trt, fp16, RTX 3060Ti)

```

==> 0

[Model Preprocess]: 12.75788ms

[ORT H2D]: 237.118µs

[ORT Inference]: 507.895469ms

[ORT D2H]: 191.655µs

[Model Inference]: 508.34589ms

[Model Postprocess]: 1.061122ms

==> 1

[Model Preprocess]: 13.658655ms

[ORT H2D]: 209.975µs

[ORT Inference]: 5.12372ms

[ORT D2H]: 182.389µs

[Model Inference]: 5.530022ms

[Model Postprocess]: 1.04851ms

==> 2

[Model Preprocess]: 12.475332ms

[ORT H2D]: 246.127µs

[ORT Inference]: 5.048432ms

[ORT D2H]: 187.117µs

[Model Inference]: 5.493119ms

[Model Postprocess]: 1.040906ms

```

And also:

`--conf`: confidence threshold \[default: 0.3\]

`--iou`: iou threshold in NMS \[default: 0.45\]

`--kconf`: confidence threshold of keypoint \[default: 0.55\]

`--plot`: plot inference result with random RGB color and save

you can check out all CLI arguments by:

```

git clone https://github.com/ultralytics/ultralytics

cd ultralytics/examples/YOLOv8-ONNXRuntime-Rust

cargo run --release -- --help

```

## Examples

### Classification

Running dynamic shape ONNX model on `CPU` with image size `--height 224 --width 224`. Saving plotted image in `runs` directory.

```

cargo run --release -- --model ../assets/weights/yolov8m-cls-dyn.onnx --source ../assets/images/dog.jpg --height 224 --width 224 --plot --profile

```

You will see result like:

```

Summary:

> Task: Classify (Ultralytics 8.0.217)

> EP: Cpu

> Dtype: Float32

> Batch: 1 (Dynamic), Height: 224 (Dynamic), Width: 224 (Dynamic)

> nc: 1000 nk: 0, nm: 0, conf: 0.3, kconf: 0.55, iou: 0.45



[Model Preprocess]: 16.363477ms

[ORT H2D]: 50.722µs

[ORT Inference]: 16.295808ms

[ORT D2H]: 8.37µs

[Model Inference]: 16.367046ms

[Model Postprocess]: 3.527µs

[

    YOLOResult {

        Probs(top5): Some([(208, 0.6950566), (209, 0.13823675), (178, 0.04849795), (215, 0.019029364), (212, 0.016506357)]),

        Bboxes: None,

        Keypoints: None,

        Masks: None,

    },

]



```

![2023-11-25-22-02-02-156623351](https://github.com/jamjamjon/ultralytics/assets/51357717/ef75c2ae-c5ab-44cc-9d9e-e60b51e39662)

### Object Detection

Using `CUDA` EP and dynamic image size `--height 640 --width 480`

```

cargo run --release -- --cuda --model ../assets/weights/yolov8m-dynamic.onnx --source ../assets/images/bus.jpg --plot --height 640 --width 480

```

![det](https://github.com/jamjamjon/ultralytics/assets/51357717/5d89a19d-0c96-4a59-875c-defab6887a2c)

### Pose Detection

using `TensorRT` EP

```

cargo run --release -- --trt --model ../assets/weights/yolov8m-pose.onnx --source ../assets/images/bus.jpg --plot

```

![2023-11-25-22-31-45-127054025](https://github.com/jamjamjon/ultralytics/assets/51357717/157b5ba7-bfcf-47cf-bee7-68b62e0de1c4)

### Instance Segmentation

using `TensorRT` EP and FP16 model `--fp16`

```

cargo run --release --  --trt --fp16 --model ../assets/weights/yolov8m-seg.onnx --source ../assets/images/0172.jpg --plot

```

![seg](https://github.com/jamjamjon/ultralytics/assets/51357717/cf046f4f-9533-478a-adc7-4de22443a641)