File size: 17,348 Bytes
c254ac1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 |
use anyhow::Result;
use clap::ValueEnum;
use half::f16;
use ndarray::{Array, CowArray, IxDyn};
use ort::execution_providers::{CUDAExecutionProviderOptions, TensorRTExecutionProviderOptions};
use ort::tensor::TensorElementDataType;
use ort::{Environment, ExecutionProvider, Session, SessionBuilder, Value};
use regex::Regex;
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, ValueEnum)]
pub enum YOLOTask {
// YOLO tasks
Classify,
Detect,
Pose,
Segment,
}
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub enum OrtEP {
// ONNXRuntime execution provider
Cpu,
Cuda(u32),
Trt(u32),
}
#[derive(Debug)]
pub struct Batch {
pub opt: u32,
pub min: u32,
pub max: u32,
}
impl Default for Batch {
fn default() -> Self {
Self {
opt: 1,
min: 1,
max: 1,
}
}
}
#[derive(Debug, Default)]
pub struct OrtInputs {
// ONNX model inputs attrs
pub shapes: Vec<Vec<i32>>,
pub dtypes: Vec<TensorElementDataType>,
pub names: Vec<String>,
pub sizes: Vec<Vec<u32>>,
}
impl OrtInputs {
pub fn new(session: &Session) -> Self {
let mut shapes = Vec::new();
let mut dtypes = Vec::new();
let mut names = Vec::new();
for i in session.inputs.iter() {
let shape: Vec<i32> = i
.dimensions()
.map(|x| if let Some(x) = x { x as i32 } else { -1i32 })
.collect();
shapes.push(shape);
dtypes.push(i.input_type);
names.push(i.name.clone());
}
Self {
shapes,
dtypes,
names,
..Default::default()
}
}
}
#[derive(Debug)]
pub struct OrtConfig {
// ORT config
pub f: String,
pub task: Option<YOLOTask>,
pub ep: OrtEP,
pub trt_fp16: bool,
pub batch: Batch,
pub image_size: (Option<u32>, Option<u32>),
}
#[derive(Debug)]
pub struct OrtBackend {
// ORT engine
session: Session,
task: YOLOTask,
ep: OrtEP,
batch: Batch,
inputs: OrtInputs,
}
impl OrtBackend {
pub fn build(args: OrtConfig) -> Result<Self> {
// build env & session
let env = Environment::builder()
.with_name("YOLOv8")
.with_log_level(ort::LoggingLevel::Verbose)
.build()?
.into_arc();
let session = SessionBuilder::new(&env)?.with_model_from_file(&args.f)?;
// get inputs
let mut inputs = OrtInputs::new(&session);
// batch size
let mut batch = args.batch;
let batch = if inputs.shapes[0][0] == -1 {
batch
} else {
assert_eq!(
inputs.shapes[0][0] as u32, batch.opt,
"Expected batch size: {}, got {}. Try using `--batch {}`.",
inputs.shapes[0][0] as u32, batch.opt, inputs.shapes[0][0] as u32
);
batch.opt = inputs.shapes[0][0] as u32;
batch
};
// input size: height and width
let height = if inputs.shapes[0][2] == -1 {
match args.image_size.0 {
Some(height) => height,
None => panic!("Failed to get model height. Make it explicit with `--height`"),
}
} else {
inputs.shapes[0][2] as u32
};
let width = if inputs.shapes[0][3] == -1 {
match args.image_size.1 {
Some(width) => width,
None => panic!("Failed to get model width. Make it explicit with `--width`"),
}
} else {
inputs.shapes[0][3] as u32
};
inputs.sizes.push(vec![height, width]);
// build provider
let (ep, provider) = match args.ep {
OrtEP::Cuda(device_id) => Self::set_ep_cuda(device_id),
OrtEP::Trt(device_id) => Self::set_ep_trt(device_id, args.trt_fp16, &batch, &inputs),
_ => (OrtEP::Cpu, ExecutionProvider::CPU(Default::default())),
};
// build session again with the new provider
let session = SessionBuilder::new(&env)?
// .with_optimization_level(ort::GraphOptimizationLevel::Level3)?
.with_execution_providers([provider])?
.with_model_from_file(args.f)?;
// task: using given one or guessing
let task = match args.task {
Some(task) => task,
None => match session.metadata() {
Err(_) => panic!("No metadata found. Try making it explicit by `--task`"),
Ok(metadata) => match metadata.custom("task") {
Err(_) => panic!("Can not get custom value. Try making it explicit by `--task`"),
Ok(value) => match value {
None => panic!("No correspoing value of `task` found in metadata. Make it explicit by `--task`"),
Some(task) => match task.as_str() {
"classify" => YOLOTask::Classify,
"detect" => YOLOTask::Detect,
"pose" => YOLOTask::Pose,
"segment" => YOLOTask::Segment,
x => todo!("{:?} is not supported for now!", x),
},
},
},
},
};
Ok(Self {
session,
task,
ep,
batch,
inputs,
})
}
pub fn fetch_inputs_from_session(
session: &Session,
) -> (Vec<Vec<i32>>, Vec<TensorElementDataType>, Vec<String>) {
// get inputs attrs from ONNX model
let mut shapes = Vec::new();
let mut dtypes = Vec::new();
let mut names = Vec::new();
for i in session.inputs.iter() {
let shape: Vec<i32> = i
.dimensions()
.map(|x| if let Some(x) = x { x as i32 } else { -1i32 })
.collect();
shapes.push(shape);
dtypes.push(i.input_type);
names.push(i.name.clone());
}
(shapes, dtypes, names)
}
pub fn set_ep_cuda(device_id: u32) -> (OrtEP, ExecutionProvider) {
// set CUDA
if ExecutionProvider::CUDA(Default::default()).is_available() {
(
OrtEP::Cuda(device_id),
ExecutionProvider::CUDA(CUDAExecutionProviderOptions {
device_id,
..Default::default()
}),
)
} else {
println!("> CUDA is not available! Using CPU.");
(OrtEP::Cpu, ExecutionProvider::CPU(Default::default()))
}
}
pub fn set_ep_trt(
device_id: u32,
fp16: bool,
batch: &Batch,
inputs: &OrtInputs,
) -> (OrtEP, ExecutionProvider) {
// set TensorRT
if ExecutionProvider::TensorRT(Default::default()).is_available() {
let (height, width) = (inputs.sizes[0][0], inputs.sizes[0][1]);
// dtype match checking
if inputs.dtypes[0] == TensorElementDataType::Float16 && !fp16 {
panic!(
"Dtype mismatch! Expected: Float32, got: {:?}. You should use `--fp16`",
inputs.dtypes[0]
);
}
// dynamic shape: input_tensor_1:dim_1xdim_2x...,input_tensor_2:dim_3xdim_4x...,...
let mut opt_string = String::new();
let mut min_string = String::new();
let mut max_string = String::new();
for name in inputs.names.iter() {
let s_opt = format!("{}:{}x3x{}x{},", name, batch.opt, height, width);
let s_min = format!("{}:{}x3x{}x{},", name, batch.min, height, width);
let s_max = format!("{}:{}x3x{}x{},", name, batch.max, height, width);
opt_string.push_str(s_opt.as_str());
min_string.push_str(s_min.as_str());
max_string.push_str(s_max.as_str());
}
let _ = opt_string.pop();
let _ = min_string.pop();
let _ = max_string.pop();
(
OrtEP::Trt(device_id),
ExecutionProvider::TensorRT(TensorRTExecutionProviderOptions {
device_id,
fp16_enable: fp16,
timing_cache_enable: true,
profile_min_shapes: min_string,
profile_max_shapes: max_string,
profile_opt_shapes: opt_string,
..Default::default()
}),
)
} else {
println!("> TensorRT is not available! Try using CUDA...");
Self::set_ep_cuda(device_id)
}
}
pub fn fetch_from_metadata(&self, key: &str) -> Option<String> {
// fetch value from onnx model file by key
match self.session.metadata() {
Err(_) => None,
Ok(metadata) => match metadata.custom(key) {
Err(_) => None,
Ok(value) => value,
},
}
}
pub fn run(&self, xs: Array<f32, IxDyn>, profile: bool) -> Result<Vec<Array<f32, IxDyn>>> {
// ORT inference
match self.dtype() {
TensorElementDataType::Float16 => self.run_fp16(xs, profile),
TensorElementDataType::Float32 => self.run_fp32(xs, profile),
_ => todo!(),
}
}
pub fn run_fp16(&self, xs: Array<f32, IxDyn>, profile: bool) -> Result<Vec<Array<f32, IxDyn>>> {
// f32->f16
let t = std::time::Instant::now();
let xs = xs.mapv(f16::from_f32);
if profile {
println!("[ORT f32->f16]: {:?}", t.elapsed());
}
// h2d
let t = std::time::Instant::now();
let xs = CowArray::from(xs);
let xs = vec![Value::from_array(self.session.allocator(), &xs)?];
if profile {
println!("[ORT H2D]: {:?}", t.elapsed());
}
// run
let t = std::time::Instant::now();
let ys = self.session.run(xs)?;
if profile {
println!("[ORT Inference]: {:?}", t.elapsed());
}
// d2h
Ok(ys
.iter()
.map(|x| {
// d2h
let t = std::time::Instant::now();
let x = x.try_extract::<_>().unwrap().view().clone().into_owned();
if profile {
println!("[ORT D2H]: {:?}", t.elapsed());
}
// f16->f32
let t_ = std::time::Instant::now();
let x = x.mapv(f16::to_f32);
if profile {
println!("[ORT f16->f32]: {:?}", t_.elapsed());
}
x
})
.collect::<Vec<Array<_, _>>>())
}
pub fn run_fp32(&self, xs: Array<f32, IxDyn>, profile: bool) -> Result<Vec<Array<f32, IxDyn>>> {
// h2d
let t = std::time::Instant::now();
let xs = CowArray::from(xs);
let xs = vec![Value::from_array(self.session.allocator(), &xs)?];
if profile {
println!("[ORT H2D]: {:?}", t.elapsed());
}
// run
let t = std::time::Instant::now();
let ys = self.session.run(xs)?;
if profile {
println!("[ORT Inference]: {:?}", t.elapsed());
}
// d2h
Ok(ys
.iter()
.map(|x| {
let t = std::time::Instant::now();
let x = x.try_extract::<_>().unwrap().view().clone().into_owned();
if profile {
println!("[ORT D2H]: {:?}", t.elapsed());
}
x
})
.collect::<Vec<Array<_, _>>>())
}
pub fn output_shapes(&self) -> Vec<Vec<i32>> {
let mut shapes = Vec::new();
for o in &self.session.outputs {
let shape: Vec<_> = o
.dimensions()
.map(|x| if let Some(x) = x { x as i32 } else { -1i32 })
.collect();
shapes.push(shape);
}
shapes
}
pub fn output_dtypes(&self) -> Vec<TensorElementDataType> {
let mut dtypes = Vec::new();
self.session
.outputs
.iter()
.for_each(|x| dtypes.push(x.output_type));
dtypes
}
pub fn input_shapes(&self) -> &Vec<Vec<i32>> {
&self.inputs.shapes
}
pub fn input_names(&self) -> &Vec<String> {
&self.inputs.names
}
pub fn input_dtypes(&self) -> &Vec<TensorElementDataType> {
&self.inputs.dtypes
}
pub fn dtype(&self) -> TensorElementDataType {
self.input_dtypes()[0]
}
pub fn height(&self) -> u32 {
self.inputs.sizes[0][0]
}
pub fn width(&self) -> u32 {
self.inputs.sizes[0][1]
}
pub fn is_height_dynamic(&self) -> bool {
self.input_shapes()[0][2] == -1
}
pub fn is_width_dynamic(&self) -> bool {
self.input_shapes()[0][3] == -1
}
pub fn batch(&self) -> u32 {
self.batch.opt
}
pub fn is_batch_dynamic(&self) -> bool {
self.input_shapes()[0][0] == -1
}
pub fn ep(&self) -> &OrtEP {
&self.ep
}
pub fn task(&self) -> YOLOTask {
self.task.clone()
}
pub fn names(&self) -> Option<Vec<String>> {
// class names, metadata parsing
// String format: `{0: 'person', 1: 'bicycle', 2: 'sports ball', ..., 27: "yellow_lady's_slipper"}`
match self.fetch_from_metadata("names") {
Some(names) => {
let re = Regex::new(r#"(['"])([-()\w '"]+)(['"])"#).unwrap();
let mut names_ = vec![];
for (_, [_, name, _]) in re.captures_iter(&names).map(|x| x.extract()) {
names_.push(name.to_string());
}
Some(names_)
}
None => None,
}
}
pub fn nk(&self) -> Option<u32> {
// num_keypoints, metadata parsing: String `nk` in onnx model: `[17, 3]`
match self.fetch_from_metadata("kpt_shape") {
None => None,
Some(kpt_string) => {
let re = Regex::new(r"([0-9]+), ([0-9]+)").unwrap();
let caps = re.captures(&kpt_string).unwrap();
Some(caps.get(1).unwrap().as_str().parse::<u32>().unwrap())
}
}
}
pub fn nc(&self) -> Option<u32> {
// num_classes
match self.names() {
// by names
Some(names) => Some(names.len() as u32),
None => match self.task() {
// by task calculation
YOLOTask::Classify => Some(self.output_shapes()[0][1] as u32),
YOLOTask::Detect => {
if self.output_shapes()[0][1] == -1 {
None
} else {
// cxywhclss
Some(self.output_shapes()[0][1] as u32 - 4)
}
}
YOLOTask::Pose => {
match self.nk() {
None => None,
Some(nk) => {
if self.output_shapes()[0][1] == -1 {
None
} else {
// cxywhclss3*kpt
Some(self.output_shapes()[0][1] as u32 - 4 - 3 * nk)
}
}
}
}
YOLOTask::Segment => {
if self.output_shapes()[0][1] == -1 {
None
} else {
// cxywhclssnm
Some((self.output_shapes()[0][1] - self.output_shapes()[1][1]) as u32 - 4)
}
}
},
}
}
pub fn nm(&self) -> Option<u32> {
// num_masks
match self.task() {
YOLOTask::Segment => Some(self.output_shapes()[1][1] as u32),
_ => None,
}
}
pub fn na(&self) -> Option<u32> {
// num_anchors
match self.task() {
YOLOTask::Segment | YOLOTask::Detect | YOLOTask::Pose => {
if self.output_shapes()[0][2] == -1 {
None
} else {
Some(self.output_shapes()[0][2] as u32)
}
}
_ => None,
}
}
pub fn author(&self) -> Option<String> {
self.fetch_from_metadata("author")
}
pub fn version(&self) -> Option<String> {
self.fetch_from_metadata("version")
}
}
|