|
#![allow(clippy::type_complexity)]
|
|
|
|
use anyhow::Result;
|
|
use image::{DynamicImage, GenericImageView, ImageBuffer};
|
|
use ndarray::{s, Array, Axis, IxDyn};
|
|
use rand::{thread_rng, Rng};
|
|
use std::path::PathBuf;
|
|
|
|
use crate::{
|
|
check_font, gen_time_string, non_max_suppression, Args, Batch, Bbox, Embedding, OrtBackend,
|
|
OrtConfig, OrtEP, Point2, YOLOResult, YOLOTask, SKELETON,
|
|
};
|
|
|
|
pub struct YOLOv8 {
|
|
|
|
engine: OrtBackend,
|
|
nc: u32,
|
|
nk: u32,
|
|
nm: u32,
|
|
height: u32,
|
|
width: u32,
|
|
batch: u32,
|
|
task: YOLOTask,
|
|
conf: f32,
|
|
kconf: f32,
|
|
iou: f32,
|
|
names: Vec<String>,
|
|
color_palette: Vec<(u8, u8, u8)>,
|
|
profile: bool,
|
|
plot: bool,
|
|
}
|
|
|
|
impl YOLOv8 {
|
|
pub fn new(config: Args) -> Result<Self> {
|
|
|
|
let ep = if config.trt {
|
|
OrtEP::Trt(config.device_id)
|
|
} else if config.cuda {
|
|
OrtEP::Cuda(config.device_id)
|
|
} else {
|
|
OrtEP::Cpu
|
|
};
|
|
|
|
|
|
let batch = Batch {
|
|
opt: config.batch,
|
|
min: config.batch_min,
|
|
max: config.batch_max,
|
|
};
|
|
|
|
|
|
let ort_args = OrtConfig {
|
|
ep,
|
|
batch,
|
|
f: config.model,
|
|
task: config.task,
|
|
trt_fp16: config.fp16,
|
|
image_size: (config.height, config.width),
|
|
};
|
|
let engine = OrtBackend::build(ort_args)?;
|
|
|
|
|
|
let (batch, height, width, task) = (
|
|
engine.batch(),
|
|
engine.height(),
|
|
engine.width(),
|
|
engine.task(),
|
|
);
|
|
let nc = engine.nc().or(config.nc).unwrap_or_else(|| {
|
|
panic!("Failed to get num_classes, make it explicit with `--nc`");
|
|
});
|
|
let (nk, nm) = match task {
|
|
YOLOTask::Pose => {
|
|
let nk = engine.nk().or(config.nk).unwrap_or_else(|| {
|
|
panic!("Failed to get num_keypoints, make it explicit with `--nk`");
|
|
});
|
|
(nk, 0)
|
|
}
|
|
YOLOTask::Segment => {
|
|
let nm = engine.nm().or(config.nm).unwrap_or_else(|| {
|
|
panic!("Failed to get num_masks, make it explicit with `--nm`");
|
|
});
|
|
(0, nm)
|
|
}
|
|
_ => (0, 0),
|
|
};
|
|
|
|
|
|
let names = engine.names().unwrap_or(vec!["Unknown".to_string()]);
|
|
|
|
|
|
let mut rng = thread_rng();
|
|
let color_palette: Vec<_> = names
|
|
.iter()
|
|
.map(|_| {
|
|
(
|
|
rng.gen_range(0..=255),
|
|
rng.gen_range(0..=255),
|
|
rng.gen_range(0..=255),
|
|
)
|
|
})
|
|
.collect();
|
|
|
|
Ok(Self {
|
|
engine,
|
|
names,
|
|
conf: config.conf,
|
|
kconf: config.kconf,
|
|
iou: config.iou,
|
|
color_palette,
|
|
profile: config.profile,
|
|
plot: config.plot,
|
|
nc,
|
|
nk,
|
|
nm,
|
|
height,
|
|
width,
|
|
batch,
|
|
task,
|
|
})
|
|
}
|
|
|
|
pub fn scale_wh(&self, w0: f32, h0: f32, w1: f32, h1: f32) -> (f32, f32, f32) {
|
|
let r = (w1 / w0).min(h1 / h0);
|
|
(r, (w0 * r).round(), (h0 * r).round())
|
|
}
|
|
|
|
pub fn preprocess(&mut self, xs: &Vec<DynamicImage>) -> Result<Array<f32, IxDyn>> {
|
|
let mut ys =
|
|
Array::ones((xs.len(), 3, self.height() as usize, self.width() as usize)).into_dyn();
|
|
ys.fill(144.0 / 255.0);
|
|
for (idx, x) in xs.iter().enumerate() {
|
|
let img = match self.task() {
|
|
YOLOTask::Classify => x.resize_exact(
|
|
self.width(),
|
|
self.height(),
|
|
image::imageops::FilterType::Triangle,
|
|
),
|
|
_ => {
|
|
let (w0, h0) = x.dimensions();
|
|
let w0 = w0 as f32;
|
|
let h0 = h0 as f32;
|
|
let (_, w_new, h_new) =
|
|
self.scale_wh(w0, h0, self.width() as f32, self.height() as f32);
|
|
x.resize_exact(
|
|
w_new as u32,
|
|
h_new as u32,
|
|
if let YOLOTask::Segment = self.task() {
|
|
image::imageops::FilterType::CatmullRom
|
|
} else {
|
|
image::imageops::FilterType::Triangle
|
|
},
|
|
)
|
|
}
|
|
};
|
|
|
|
for (x, y, rgb) in img.pixels() {
|
|
let x = x as usize;
|
|
let y = y as usize;
|
|
let [r, g, b, _] = rgb.0;
|
|
ys[[idx, 0, y, x]] = (r as f32) / 255.0;
|
|
ys[[idx, 1, y, x]] = (g as f32) / 255.0;
|
|
ys[[idx, 2, y, x]] = (b as f32) / 255.0;
|
|
}
|
|
}
|
|
|
|
Ok(ys)
|
|
}
|
|
|
|
pub fn run(&mut self, xs: &Vec<DynamicImage>) -> Result<Vec<YOLOResult>> {
|
|
|
|
let t_pre = std::time::Instant::now();
|
|
let xs_ = self.preprocess(xs)?;
|
|
if self.profile {
|
|
println!("[Model Preprocess]: {:?}", t_pre.elapsed());
|
|
}
|
|
|
|
|
|
let t_run = std::time::Instant::now();
|
|
let ys = self.engine.run(xs_, self.profile)?;
|
|
if self.profile {
|
|
println!("[Model Inference]: {:?}", t_run.elapsed());
|
|
}
|
|
|
|
|
|
let t_post = std::time::Instant::now();
|
|
let ys = self.postprocess(ys, xs)?;
|
|
if self.profile {
|
|
println!("[Model Postprocess]: {:?}", t_post.elapsed());
|
|
}
|
|
|
|
|
|
if self.plot {
|
|
self.plot_and_save(&ys, xs, Some(&SKELETON));
|
|
}
|
|
Ok(ys)
|
|
}
|
|
|
|
pub fn postprocess(
|
|
&self,
|
|
xs: Vec<Array<f32, IxDyn>>,
|
|
xs0: &[DynamicImage],
|
|
) -> Result<Vec<YOLOResult>> {
|
|
if let YOLOTask::Classify = self.task() {
|
|
let mut ys = Vec::new();
|
|
let preds = &xs[0];
|
|
for batch in preds.axis_iter(Axis(0)) {
|
|
ys.push(YOLOResult::new(
|
|
Some(Embedding::new(batch.into_owned())),
|
|
None,
|
|
None,
|
|
None,
|
|
));
|
|
}
|
|
Ok(ys)
|
|
} else {
|
|
const CXYWH_OFFSET: usize = 4;
|
|
const KPT_STEP: usize = 3;
|
|
let preds = &xs[0];
|
|
let protos = {
|
|
if xs.len() > 1 {
|
|
Some(&xs[1])
|
|
} else {
|
|
None
|
|
}
|
|
};
|
|
let mut ys = Vec::new();
|
|
for (idx, anchor) in preds.axis_iter(Axis(0)).enumerate() {
|
|
|
|
|
|
let width_original = xs0[idx].width() as f32;
|
|
let height_original = xs0[idx].height() as f32;
|
|
let ratio = (self.width() as f32 / width_original)
|
|
.min(self.height() as f32 / height_original);
|
|
|
|
|
|
let mut data: Vec<(Bbox, Option<Vec<Point2>>, Option<Vec<f32>>)> = Vec::new();
|
|
for pred in anchor.axis_iter(Axis(1)) {
|
|
|
|
let bbox = pred.slice(s![0..CXYWH_OFFSET]);
|
|
let clss = pred.slice(s![CXYWH_OFFSET..CXYWH_OFFSET + self.nc() as usize]);
|
|
let kpts = {
|
|
if let YOLOTask::Pose = self.task() {
|
|
Some(pred.slice(s![pred.len() - KPT_STEP * self.nk() as usize..]))
|
|
} else {
|
|
None
|
|
}
|
|
};
|
|
let coefs = {
|
|
if let YOLOTask::Segment = self.task() {
|
|
Some(pred.slice(s![pred.len() - self.nm() as usize..]).to_vec())
|
|
} else {
|
|
None
|
|
}
|
|
};
|
|
|
|
|
|
let (id, &confidence) = clss
|
|
.into_iter()
|
|
.enumerate()
|
|
.reduce(|max, x| if x.1 > max.1 { x } else { max })
|
|
.unwrap();
|
|
|
|
|
|
if confidence < self.conf {
|
|
continue;
|
|
}
|
|
|
|
|
|
let cx = bbox[0] / ratio;
|
|
let cy = bbox[1] / ratio;
|
|
let w = bbox[2] / ratio;
|
|
let h = bbox[3] / ratio;
|
|
let x = cx - w / 2.;
|
|
let y = cy - h / 2.;
|
|
let y_bbox = Bbox::new(
|
|
x.max(0.0f32).min(width_original),
|
|
y.max(0.0f32).min(height_original),
|
|
w,
|
|
h,
|
|
id,
|
|
confidence,
|
|
);
|
|
|
|
|
|
let y_kpts = {
|
|
if let Some(kpts) = kpts {
|
|
let mut kpts_ = Vec::new();
|
|
|
|
for i in 0..self.nk() as usize {
|
|
let kx = kpts[KPT_STEP * i] / ratio;
|
|
let ky = kpts[KPT_STEP * i + 1] / ratio;
|
|
let kconf = kpts[KPT_STEP * i + 2];
|
|
if kconf < self.kconf {
|
|
kpts_.push(Point2::default());
|
|
} else {
|
|
kpts_.push(Point2::new_with_conf(
|
|
kx.max(0.0f32).min(width_original),
|
|
ky.max(0.0f32).min(height_original),
|
|
kconf,
|
|
));
|
|
}
|
|
}
|
|
Some(kpts_)
|
|
} else {
|
|
None
|
|
}
|
|
};
|
|
|
|
|
|
data.push((y_bbox, y_kpts, coefs));
|
|
}
|
|
|
|
|
|
non_max_suppression(&mut data, self.iou);
|
|
|
|
|
|
let mut y_bboxes: Vec<Bbox> = Vec::new();
|
|
let mut y_kpts: Vec<Vec<Point2>> = Vec::new();
|
|
let mut y_masks: Vec<Vec<u8>> = Vec::new();
|
|
for elem in data.into_iter() {
|
|
if let Some(kpts) = elem.1 {
|
|
y_kpts.push(kpts)
|
|
}
|
|
|
|
|
|
if let Some(coefs) = elem.2 {
|
|
let proto = protos.unwrap().slice(s![idx, .., .., ..]);
|
|
let (nm, nh, nw) = proto.dim();
|
|
|
|
|
|
let coefs = Array::from_shape_vec((1, nm), coefs)?;
|
|
let proto = proto.to_owned().into_shape((nm, nh * nw))?;
|
|
let mask = coefs.dot(&proto).into_shape((nh, nw, 1))?;
|
|
|
|
|
|
let mask_im: ImageBuffer<image::Luma<_>, Vec<f32>> =
|
|
match ImageBuffer::from_raw(nw as u32, nh as u32, mask.into_raw_vec()) {
|
|
Some(image) => image,
|
|
None => panic!("can not create image from ndarray"),
|
|
};
|
|
let mut mask_im = image::DynamicImage::from(mask_im);
|
|
|
|
|
|
let (_, w_mask, h_mask) =
|
|
self.scale_wh(width_original, height_original, nw as f32, nh as f32);
|
|
let mask_cropped = mask_im.crop(0, 0, w_mask as u32, h_mask as u32);
|
|
let mask_original = mask_cropped.resize_exact(
|
|
|
|
width_original as u32,
|
|
height_original as u32,
|
|
match self.task() {
|
|
YOLOTask::Segment => image::imageops::FilterType::CatmullRom,
|
|
_ => image::imageops::FilterType::Triangle,
|
|
},
|
|
);
|
|
|
|
|
|
let mut mask_original_cropped = mask_original.into_luma8();
|
|
for y in 0..height_original as usize {
|
|
for x in 0..width_original as usize {
|
|
if x < elem.0.xmin() as usize
|
|
|| x > elem.0.xmax() as usize
|
|
|| y < elem.0.ymin() as usize
|
|
|| y > elem.0.ymax() as usize
|
|
{
|
|
mask_original_cropped.put_pixel(
|
|
x as u32,
|
|
y as u32,
|
|
image::Luma([0u8]),
|
|
);
|
|
}
|
|
}
|
|
}
|
|
y_masks.push(mask_original_cropped.into_raw());
|
|
}
|
|
y_bboxes.push(elem.0);
|
|
}
|
|
|
|
|
|
let y = YOLOResult {
|
|
probs: None,
|
|
bboxes: if !y_bboxes.is_empty() {
|
|
Some(y_bboxes)
|
|
} else {
|
|
None
|
|
},
|
|
keypoints: if !y_kpts.is_empty() {
|
|
Some(y_kpts)
|
|
} else {
|
|
None
|
|
},
|
|
masks: if !y_masks.is_empty() {
|
|
Some(y_masks)
|
|
} else {
|
|
None
|
|
},
|
|
};
|
|
ys.push(y);
|
|
}
|
|
|
|
Ok(ys)
|
|
}
|
|
}
|
|
|
|
pub fn plot_and_save(
|
|
&self,
|
|
ys: &[YOLOResult],
|
|
xs0: &[DynamicImage],
|
|
skeletons: Option<&[(usize, usize)]>,
|
|
) {
|
|
|
|
let font = check_font("Arial.ttf");
|
|
for (_idb, (img0, y)) in xs0.iter().zip(ys.iter()).enumerate() {
|
|
let mut img = img0.to_rgb8();
|
|
|
|
|
|
if let Some(probs) = y.probs() {
|
|
for (i, k) in probs.topk(5).iter().enumerate() {
|
|
let legend = format!("{} {:.2}%", self.names[k.0], k.1);
|
|
let scale = 32;
|
|
let legend_size = img.width().max(img.height()) / scale;
|
|
let x = img.width() / 20;
|
|
let y = img.height() / 20 + i as u32 * legend_size;
|
|
imageproc::drawing::draw_text_mut(
|
|
&mut img,
|
|
image::Rgb([0, 255, 0]),
|
|
x as i32,
|
|
y as i32,
|
|
rusttype::Scale::uniform(legend_size as f32 - 1.),
|
|
&font,
|
|
&legend,
|
|
);
|
|
}
|
|
}
|
|
|
|
|
|
if let Some(bboxes) = y.bboxes() {
|
|
for (_idx, bbox) in bboxes.iter().enumerate() {
|
|
|
|
imageproc::drawing::draw_hollow_rect_mut(
|
|
&mut img,
|
|
imageproc::rect::Rect::at(bbox.xmin() as i32, bbox.ymin() as i32)
|
|
.of_size(bbox.width() as u32, bbox.height() as u32),
|
|
image::Rgb(self.color_palette[bbox.id()].into()),
|
|
);
|
|
|
|
|
|
let legend = format!("{} {:.2}%", self.names[bbox.id()], bbox.confidence());
|
|
let scale = 40;
|
|
let legend_size = img.width().max(img.height()) / scale;
|
|
imageproc::drawing::draw_text_mut(
|
|
&mut img,
|
|
image::Rgb(self.color_palette[bbox.id()].into()),
|
|
bbox.xmin() as i32,
|
|
(bbox.ymin() - legend_size as f32) as i32,
|
|
rusttype::Scale::uniform(legend_size as f32 - 1.),
|
|
&font,
|
|
&legend,
|
|
);
|
|
}
|
|
}
|
|
|
|
|
|
if let Some(keypoints) = y.keypoints() {
|
|
for kpts in keypoints.iter() {
|
|
for kpt in kpts.iter() {
|
|
|
|
if kpt.confidence() < self.kconf {
|
|
continue;
|
|
}
|
|
|
|
|
|
imageproc::drawing::draw_filled_circle_mut(
|
|
&mut img,
|
|
(kpt.x() as i32, kpt.y() as i32),
|
|
2,
|
|
image::Rgb([0, 255, 0]),
|
|
);
|
|
}
|
|
|
|
|
|
if let Some(skeletons) = skeletons {
|
|
for &(idx1, idx2) in skeletons.iter() {
|
|
let kpt1 = &kpts[idx1];
|
|
let kpt2 = &kpts[idx2];
|
|
if kpt1.confidence() < self.kconf || kpt2.confidence() < self.kconf {
|
|
continue;
|
|
}
|
|
imageproc::drawing::draw_line_segment_mut(
|
|
&mut img,
|
|
(kpt1.x(), kpt1.y()),
|
|
(kpt2.x(), kpt2.y()),
|
|
image::Rgb([233, 14, 57]),
|
|
);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
if let Some(masks) = y.masks() {
|
|
for (mask, _bbox) in masks.iter().zip(y.bboxes().unwrap().iter()) {
|
|
let mask_nd: ImageBuffer<image::Luma<_>, Vec<u8>> =
|
|
match ImageBuffer::from_vec(img.width(), img.height(), mask.to_vec()) {
|
|
Some(image) => image,
|
|
None => panic!("can not crate image from ndarray"),
|
|
};
|
|
|
|
for _x in 0..img.width() {
|
|
for _y in 0..img.height() {
|
|
let mask_p = imageproc::drawing::Canvas::get_pixel(&mask_nd, _x, _y);
|
|
if mask_p.0[0] > 0 {
|
|
let mut img_p = imageproc::drawing::Canvas::get_pixel(&img, _x, _y);
|
|
|
|
|
|
|
|
img_p.0[2] /= 2;
|
|
img_p.0[1] = 255 - (255 - img_p.0[2]) / 2;
|
|
img_p.0[0] /= 2;
|
|
imageproc::drawing::Canvas::draw_pixel(&mut img, _x, _y, img_p)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
let mut runs = PathBuf::from("runs");
|
|
if !runs.exists() {
|
|
std::fs::create_dir_all(&runs).unwrap();
|
|
}
|
|
runs.push(gen_time_string("-"));
|
|
let saveout = format!("{}.jpg", runs.to_str().unwrap());
|
|
let _ = img.save(saveout);
|
|
}
|
|
}
|
|
|
|
pub fn summary(&self) {
|
|
println!(
|
|
"\nSummary:\n\
|
|
> Task: {:?}{}\n\
|
|
> EP: {:?} {}\n\
|
|
> Dtype: {:?}\n\
|
|
> Batch: {} ({}), Height: {} ({}), Width: {} ({})\n\
|
|
> nc: {} nk: {}, nm: {}, conf: {}, kconf: {}, iou: {}\n\
|
|
",
|
|
self.task(),
|
|
match self.engine.author().zip(self.engine.version()) {
|
|
Some((author, ver)) => format!(" ({} {})", author, ver),
|
|
None => String::from(""),
|
|
},
|
|
self.engine.ep(),
|
|
if let OrtEP::Cpu = self.engine.ep() {
|
|
""
|
|
} else {
|
|
"(May still fall back to CPU)"
|
|
},
|
|
self.engine.dtype(),
|
|
self.batch(),
|
|
if self.engine.is_batch_dynamic() {
|
|
"Dynamic"
|
|
} else {
|
|
"Const"
|
|
},
|
|
self.height(),
|
|
if self.engine.is_height_dynamic() {
|
|
"Dynamic"
|
|
} else {
|
|
"Const"
|
|
},
|
|
self.width(),
|
|
if self.engine.is_width_dynamic() {
|
|
"Dynamic"
|
|
} else {
|
|
"Const"
|
|
},
|
|
self.nc(),
|
|
self.nk(),
|
|
self.nm(),
|
|
self.conf,
|
|
self.kconf,
|
|
self.iou,
|
|
);
|
|
}
|
|
|
|
pub fn engine(&self) -> &OrtBackend {
|
|
&self.engine
|
|
}
|
|
|
|
pub fn conf(&self) -> f32 {
|
|
self.conf
|
|
}
|
|
|
|
pub fn set_conf(&mut self, val: f32) {
|
|
self.conf = val;
|
|
}
|
|
|
|
pub fn conf_mut(&mut self) -> &mut f32 {
|
|
&mut self.conf
|
|
}
|
|
|
|
pub fn kconf(&self) -> f32 {
|
|
self.kconf
|
|
}
|
|
|
|
pub fn iou(&self) -> f32 {
|
|
self.iou
|
|
}
|
|
|
|
pub fn task(&self) -> &YOLOTask {
|
|
&self.task
|
|
}
|
|
|
|
pub fn batch(&self) -> u32 {
|
|
self.batch
|
|
}
|
|
|
|
pub fn width(&self) -> u32 {
|
|
self.width
|
|
}
|
|
|
|
pub fn height(&self) -> u32 {
|
|
self.height
|
|
}
|
|
|
|
pub fn nc(&self) -> u32 {
|
|
self.nc
|
|
}
|
|
|
|
pub fn nk(&self) -> u32 {
|
|
self.nk
|
|
}
|
|
|
|
pub fn nm(&self) -> u32 {
|
|
self.nm
|
|
}
|
|
|
|
pub fn names(&self) -> &Vec<String> {
|
|
&self.names
|
|
}
|
|
}
|
|
|