import pandas as pd import os import shutil import gradio as gr import utils_data_extraction import utils_assessment import importlib importlib.reload(utils_data_extraction) importlib.reload(utils_assessment) """### Function to load data Data is loaded from a Roamler Excel file, from a sheet called "output". - A subset of the Excel file is taken as reference data, and saved in the `outputs` directory as reference_data.csv - A folder for storing photos is created A n_rows parameter can be passed to load a subset of the data. """ def load_roamler_excel_file(filepath, n_rows=3): OUTPUT_DIR = 'outputs/'+os.path.basename(filepath) if not os.path.exists(OUTPUT_DIR): os.makedirs(OUTPUT_DIR) DATA_EXTRACTION_DIR=OUTPUT_DIR+'/data_extraction' if not os.path.exists(DATA_EXTRACTION_DIR): os.makedirs(DATA_EXTRACTION_DIR) df_review = pd.read_excel(filepath, sheet_name='Output') if n_rows is not None: df_review = df_review.sample(n=n_rows, random_state=42) df_products = df_review[['ID', 'Front photo', 'Nutritionals photo', 'Ingredients photo', 'EAN photo', 'Brand', 'Product name', 'Legal name', 'Barcode', 'Energy kJ', 'Energy kcal', 'Fat', 'Saturated fat', 'Carbohydrates', 'Sugars', 'Fibers', 'Proteins', 'Salt', 'Ingredients', 'Nutriscore','Allergens', 'Quantity per unit']].copy() df_products.to_csv(f'{OUTPUT_DIR}/data_extraction/reference_data.csv', index=False) PHOTO_DIR=OUTPUT_DIR+'/photos' if not os.path.exists(PHOTO_DIR): os.makedirs(PHOTO_DIR) df_brand_data, df_product_name_data, df_ingredients_data, df_nutritional_values_data = load_df_from_folder(OUTPUT_DIR) return df_products, OUTPUT_DIR, df_brand_data, df_product_name_data, df_ingredients_data, df_nutritional_values_data def load_df_from_folder(OUTPUT_DIR): df_brand_data = pd.DataFrame(columns=['ID', 'Extracted_Text', 'Price', 'Processing time']) if os.path.exists(f'{OUTPUT_DIR}/data_extraction/brand.csv'): df_brand_data = pd.read_csv(f'{OUTPUT_DIR}/data_extraction/brand.csv') df_product_name_data = pd.DataFrame(columns=['ID', 'Extracted_Text', 'Price', 'Processing time']) if os.path.exists(f'{OUTPUT_DIR}/data_extraction/product_name.csv'): df_product_name_data = pd.read_csv(f'{OUTPUT_DIR}/data_extraction/product_name.csv') df_ingredients_data = pd.DataFrame(columns=['ID', 'Extracted_Text', 'Price', 'Processing time']) if os.path.exists(f'{OUTPUT_DIR}/data_extraction/ingredients.csv'): df_ingredients_data = pd.read_csv(f'{OUTPUT_DIR}/data_extraction/ingredients.csv') df_nutritional_values_data = pd.DataFrame(columns=['ID', 'Extracted_Text', 'Price', 'Processing time']) if os.path.exists(f'{OUTPUT_DIR}/data_extraction/nutritional_values.csv'): df_nutritional_values_data = pd.read_csv(f'{OUTPUT_DIR}/data_extraction/nutritional_values.csv') return df_brand_data, df_product_name_data, df_ingredients_data, df_nutritional_values_data def load_csv_files(archive, OUTPUT_DIR): accepted_files = ['brand.csv', 'product_name.csv', 'ingredients.csv', 'nutritional_values.csv'] for file in archive: print(os.path.basename(file)) if os.path.basename(file) in accepted_files: shutil.copy(file, f'{OUTPUT_DIR}/data_extraction') df_brand_data, df_product_name_data, df_ingredients_data, df_nutritional_values_data = load_df_from_folder(OUTPUT_DIR) return df_brand_data, df_product_name_data, df_ingredients_data, df_nutritional_values_data """### Function to save data This function is called when the user clicks on the "Generate data archive" button. It creates a zip of all CSV files of the f'{OUTPUT_DIR}/data_extraction' folder, and return a download button to the archive. """ def generate_archive(OUTPUT_DIR): # Download all data archive_name = f'{OUTPUT_DIR}' shutil.make_archive(archive_name, 'zip', f'{OUTPUT_DIR}/data_extraction') return gr.DownloadButton(label=f"Download {archive_name}.zip", value=f'{archive_name}.zip', visible=True) """### Gradio UI""" def toggle_row_visibility(show): if show: return gr.update(visible=True) else: return gr.update(visible=False) language = 'French' # Custom CSS to set max height for the rows custom_css = """ .dataframe-wrap { max-height: 300px; /* Set the desired height */ overflow-y: scroll; } """ OUTPUT_DIR_value = "" dummy_data = df_brand_data = df_product_name_data = df_ingredients_data = df_nutritional_values_data = pd.DataFrame() #dummy_data, OUTPUT_DIR_value, df_brand_data, df_product_name_data, df_ingredients_data, df_nutritional_values_data = load_roamler_excel_file("FDL-Datasets3/FR - Review.xlsm", n_rows=3) with gr.Blocks(css=custom_css) as fdl_data_extraction_ui: gr.HTML("

Euroconsumers Food Data Lake

") gr.HTML("

Data extraction

") OUTPUT_DIR = gr.State(value=OUTPUT_DIR_value) with gr.Row(): with gr.Column(): gr.HTML("

Upload Roamler Excel file

") load_roamler_excel_file_input = gr.File(label="Upload Roamler Excel file", type="filepath") with gr.Row(visible=False) as dataset_block: with gr.Column(): gr.HTML("

Dataset summary

") # Display summary of the dataset - ID, Reference_brand, Reference_product_name, mean_accuracy_score with gr.Row(elem_classes="dataframe-wrap"): dataframe_component = gr.DataFrame(value=dummy_data, interactive=False) with gr.Row(visible=False) as product_detail_block: with gr.Column(): # Section for product details gr.HTML("

Data extraction

") load_csv_files_input = gr.Files(label="Upload extracted data from CSV files") language = gr.Dropdown(label="Select language", choices=["French", "Dutch", "Spanish", "Italian", "Portuguese"], value="French") gr.HTML("

Brand

") extract_brand_button = gr.Button("Extract brand") df_brand = gr.Dataframe(label="Brand data", scale=2, column_widths=["10%", "60%", "15%", "15%"], wrap=True, value=df_brand_data) gr.HTML("

Product name

") extract_product_name_button = gr.Button("Extract product_name") df_product_name = gr.Dataframe(label="Product name data", scale=2, column_widths=["10%", "60%", "15%", "15%"], wrap=True, value=df_product_name_data) gr.HTML("

Ingredients

") extract_ingredients_button = gr.Button("Extract ingredients") df_ingredients = gr.Dataframe(label="Ingredients data", scale=2, column_widths=["10%", "60%", "15%", "15%"], wrap=True, value=df_ingredients_data) gr.HTML("

Nutritional values

") extract_nutritional_values_button = gr.Button("Extract nutritional values") df_nutritional_values = gr.Dataframe(label="Nutritional data", scale=2, column_widths=["10%", "60%", "15%", "15%"], wrap=True, value=df_nutritional_values_data) # Download gr.HTML("

Data download

") generate_merged_file_button = gr.Button("Generate merged file") generate_archive_button = gr.Button("Generate data archive") download_button = gr.DownloadButton("Download archive", visible=False) ### Control functions # Linking the select_dataset change event to update both the gradio DataFrame and product_ids dropdown load_roamler_excel_file_input.change(load_roamler_excel_file, inputs=load_roamler_excel_file_input, outputs=[dataframe_component, OUTPUT_DIR, df_brand, df_product_name, df_ingredients, df_nutritional_values]) # Toggle visibility of the dataset block load_roamler_excel_file_input.change(toggle_row_visibility, inputs=load_roamler_excel_file_input, outputs=dataset_block) load_roamler_excel_file_input.change(toggle_row_visibility, inputs=load_roamler_excel_file_input, outputs=product_detail_block) load_csv_files_input.change(load_csv_files, inputs=[load_csv_files_input, OUTPUT_DIR], outputs=[df_brand, df_product_name, df_ingredients, df_nutritional_values]) # Data extraction extract_brand_button.click(utils_data_extraction.extract_brand, inputs=[OUTPUT_DIR, dataframe_component, language], outputs=df_brand) extract_product_name_button.click(utils_data_extraction.extract_product_name, inputs=[OUTPUT_DIR, dataframe_component, language], outputs=df_product_name) extract_ingredients_button.click(utils_data_extraction.extract_ingredients, inputs=[OUTPUT_DIR, dataframe_component, language], outputs=df_ingredients) extract_nutritional_values_button.click(utils_data_extraction.extract_nutritional_values, inputs=[OUTPUT_DIR, dataframe_component, language], outputs=df_nutritional_values) generate_merged_file_button.click(utils_assessment.merge_and_save_data, inputs=OUTPUT_DIR) generate_archive_button.click(generate_archive, inputs=OUTPUT_DIR, outputs=download_button) fdl_data_extraction_ui.launch(debug=True)