Spaces:
Sleeping
Sleeping
some small organizations
Browse files- S0_PrepareDataset.py +2 -0
- S6_Evaluation 2.ipynb +22 -32
- data/annotations.csv +0 -3
- data/coco.yaml +0 -3
- data/dataset.yaml +0 -3
- data/timber.csv +0 -3
- data/voc.yaml +0 -3
S0_PrepareDataset.py
CHANGED
@@ -4,6 +4,7 @@ import tarfile
|
|
4 |
import requests
|
5 |
from tqdm import tqdm
|
6 |
import os
|
|
|
7 |
from joblib import Parallel, delayed
|
8 |
|
9 |
def listdir_full(path: str) -> list[str]:
|
@@ -26,6 +27,7 @@ def download_file(url, pos):
|
|
26 |
p_bar.update(len(chunk))
|
27 |
return local_filename
|
28 |
|
|
|
29 |
IMAGE_DIR = "data/image"
|
30 |
if not os.path.isdir(IMAGE_DIR):
|
31 |
links = ["http://www.inf.ufpr.br/lesoliveira/download/macroscopic0.zip",
|
|
|
4 |
import requests
|
5 |
from tqdm import tqdm
|
6 |
import os
|
7 |
+
from pathlib import Path
|
8 |
from joblib import Parallel, delayed
|
9 |
|
10 |
def listdir_full(path: str) -> list[str]:
|
|
|
27 |
p_bar.update(len(chunk))
|
28 |
return local_filename
|
29 |
|
30 |
+
Path("data").mkdir(exist_ok=True)
|
31 |
IMAGE_DIR = "data/image"
|
32 |
if not os.path.isdir(IMAGE_DIR):
|
33 |
links = ["http://www.inf.ufpr.br/lesoliveira/download/macroscopic0.zip",
|
S6_Evaluation 2.ipynb
CHANGED
@@ -64,7 +64,7 @@
|
|
64 |
},
|
65 |
{
|
66 |
"cell_type": "code",
|
67 |
-
"execution_count":
|
68 |
"metadata": {},
|
69 |
"outputs": [
|
70 |
{
|
@@ -99,7 +99,7 @@
|
|
99 |
},
|
100 |
{
|
101 |
"cell_type": "code",
|
102 |
-
"execution_count":
|
103 |
"metadata": {},
|
104 |
"outputs": [],
|
105 |
"source": [
|
@@ -128,7 +128,7 @@
|
|
128 |
},
|
129 |
{
|
130 |
"cell_type": "code",
|
131 |
-
"execution_count":
|
132 |
"metadata": {},
|
133 |
"outputs": [
|
134 |
{
|
@@ -622,20 +622,9 @@
|
|
622 |
"40 96 "
|
623 |
]
|
624 |
},
|
625 |
-
"execution_count":
|
626 |
"metadata": {},
|
627 |
"output_type": "execute_result"
|
628 |
-
},
|
629 |
-
{
|
630 |
-
"ename": "",
|
631 |
-
"evalue": "",
|
632 |
-
"output_type": "error",
|
633 |
-
"traceback": [
|
634 |
-
"\u001b[1;31mThe Kernel crashed while executing code in the current cell or a previous cell. \n",
|
635 |
-
"\u001b[1;31mPlease review the code in the cell(s) to identify a possible cause of the failure. \n",
|
636 |
-
"\u001b[1;31mClick <a href='https://aka.ms/vscodeJupyterKernelCrash'>here</a> for more info. \n",
|
637 |
-
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
|
638 |
-
]
|
639 |
}
|
640 |
],
|
641 |
"source": [
|
@@ -648,17 +637,9 @@
|
|
648 |
},
|
649 |
{
|
650 |
"cell_type": "code",
|
651 |
-
"execution_count":
|
652 |
"metadata": {},
|
653 |
-
"outputs": [
|
654 |
-
{
|
655 |
-
"name": "stderr",
|
656 |
-
"output_type": "stream",
|
657 |
-
"text": [
|
658 |
-
"100%|██████████| 312/312 [01:19<00:00, 3.92it/s]\n"
|
659 |
-
]
|
660 |
-
}
|
661 |
-
],
|
662 |
"source": [
|
663 |
"test_loader = DataLoader(TimberDataset(test_df, is_train=True,transform=transform),\n",
|
664 |
" batch_size=12)\n",
|
@@ -669,7 +650,7 @@
|
|
669 |
},
|
670 |
{
|
671 |
"cell_type": "code",
|
672 |
-
"execution_count":
|
673 |
"metadata": {},
|
674 |
"outputs": [
|
675 |
{
|
@@ -707,16 +688,16 @@
|
|
707 |
},
|
708 |
{
|
709 |
"cell_type": "code",
|
710 |
-
"execution_count":
|
711 |
"metadata": {},
|
712 |
"outputs": [
|
713 |
{
|
714 |
"data": {
|
715 |
"text/plain": [
|
716 |
-
"
|
717 |
]
|
718 |
},
|
719 |
-
"execution_count":
|
720 |
"metadata": {},
|
721 |
"output_type": "execute_result"
|
722 |
}
|
@@ -727,7 +708,7 @@
|
|
727 |
},
|
728 |
{
|
729 |
"cell_type": "code",
|
730 |
-
"execution_count":
|
731 |
"metadata": {},
|
732 |
"outputs": [],
|
733 |
"source": [
|
@@ -756,7 +737,7 @@
|
|
756 |
},
|
757 |
{
|
758 |
"cell_type": "code",
|
759 |
-
"execution_count":
|
760 |
"metadata": {},
|
761 |
"outputs": [
|
762 |
{
|
@@ -1250,7 +1231,7 @@
|
|
1250 |
"40 8 "
|
1251 |
]
|
1252 |
},
|
1253 |
-
"execution_count":
|
1254 |
"metadata": {},
|
1255 |
"output_type": "execute_result"
|
1256 |
}
|
@@ -1259,6 +1240,15 @@
|
|
1259 |
"zipped = zip(os.listdir(\"data/image/test\"), accuracy, recall, precision, f1s, class_count)\n",
|
1260 |
"pd.DataFrame(zipped, columns=[\"Name\", \"Accuracy\", \"Recall\", \"Precision\", \"F1-Score\", \"N Samples\"])"
|
1261 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1262 |
}
|
1263 |
],
|
1264 |
"metadata": {
|
|
|
64 |
},
|
65 |
{
|
66 |
"cell_type": "code",
|
67 |
+
"execution_count": 4,
|
68 |
"metadata": {},
|
69 |
"outputs": [
|
70 |
{
|
|
|
99 |
},
|
100 |
{
|
101 |
"cell_type": "code",
|
102 |
+
"execution_count": 5,
|
103 |
"metadata": {},
|
104 |
"outputs": [],
|
105 |
"source": [
|
|
|
128 |
},
|
129 |
{
|
130 |
"cell_type": "code",
|
131 |
+
"execution_count": 6,
|
132 |
"metadata": {},
|
133 |
"outputs": [
|
134 |
{
|
|
|
622 |
"40 96 "
|
623 |
]
|
624 |
},
|
625 |
+
"execution_count": 6,
|
626 |
"metadata": {},
|
627 |
"output_type": "execute_result"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
628 |
}
|
629 |
],
|
630 |
"source": [
|
|
|
637 |
},
|
638 |
{
|
639 |
"cell_type": "code",
|
640 |
+
"execution_count": 7,
|
641 |
"metadata": {},
|
642 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
643 |
"source": [
|
644 |
"test_loader = DataLoader(TimberDataset(test_df, is_train=True,transform=transform),\n",
|
645 |
" batch_size=12)\n",
|
|
|
650 |
},
|
651 |
{
|
652 |
"cell_type": "code",
|
653 |
+
"execution_count": 8,
|
654 |
"metadata": {},
|
655 |
"outputs": [
|
656 |
{
|
|
|
688 |
},
|
689 |
{
|
690 |
"cell_type": "code",
|
691 |
+
"execution_count": 9,
|
692 |
"metadata": {},
|
693 |
"outputs": [
|
694 |
{
|
695 |
"data": {
|
696 |
"text/plain": [
|
697 |
+
"50"
|
698 |
]
|
699 |
},
|
700 |
+
"execution_count": 9,
|
701 |
"metadata": {},
|
702 |
"output_type": "execute_result"
|
703 |
}
|
|
|
708 |
},
|
709 |
{
|
710 |
"cell_type": "code",
|
711 |
+
"execution_count": 10,
|
712 |
"metadata": {},
|
713 |
"outputs": [],
|
714 |
"source": [
|
|
|
737 |
},
|
738 |
{
|
739 |
"cell_type": "code",
|
740 |
+
"execution_count": 11,
|
741 |
"metadata": {},
|
742 |
"outputs": [
|
743 |
{
|
|
|
1231 |
"40 8 "
|
1232 |
]
|
1233 |
},
|
1234 |
+
"execution_count": 11,
|
1235 |
"metadata": {},
|
1236 |
"output_type": "execute_result"
|
1237 |
}
|
|
|
1240 |
"zipped = zip(os.listdir(\"data/image/test\"), accuracy, recall, precision, f1s, class_count)\n",
|
1241 |
"pd.DataFrame(zipped, columns=[\"Name\", \"Accuracy\", \"Recall\", \"Precision\", \"F1-Score\", \"N Samples\"])"
|
1242 |
]
|
1243 |
+
},
|
1244 |
+
{
|
1245 |
+
"cell_type": "code",
|
1246 |
+
"execution_count": null,
|
1247 |
+
"metadata": {},
|
1248 |
+
"outputs": [],
|
1249 |
+
"source": [
|
1250 |
+
"pd.DataFrame(zipped, columns=[\"Name\", \"Accuracy\", \"Recall\", \"Precision\", \"F1-Score\", \"N Samples\"])"
|
1251 |
+
]
|
1252 |
}
|
1253 |
],
|
1254 |
"metadata": {
|
data/annotations.csv
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:64dfe7d6b4be6d3efa7b52c5919eebb8068d53fba555f585b401ece80779db0f
|
3 |
-
size 81559
|
|
|
|
|
|
|
|
data/coco.yaml
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:65cc8c22fc16910f500b4dbfa1660dccabad9acc2bab1e670fd379c96a6aad72
|
3 |
-
size 1310
|
|
|
|
|
|
|
|
data/dataset.yaml
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:586efc12ccc267f70359b3fb245f93effe57891ca53734fb0f8d9c0c9d32c9b6
|
3 |
-
size 1258
|
|
|
|
|
|
|
|
data/timber.csv
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:137eb7516924d5d0c6a3921d54b294e95f506e58c853339d428a810901d5124e
|
3 |
-
size 1605
|
|
|
|
|
|
|
|
data/voc.yaml
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:f496796f480b640ded3931ed83e499bdf269f96dedbb55272674fb81825a3fdc
|
3 |
-
size 612
|
|
|
|
|
|
|
|