Spaces:
Sleeping
Sleeping
# Created by yarramsettinaresh GORAKA DIGITAL PRIVATE LIMITED at 24/10/24 | |
import gradio as gr | |
import cv2 | |
import time | |
from ultralytics import YOLO | |
# Load your YOLO model (adjust model path or type as needed) | |
model_path = "model_- 11 october 2024 11_07.pt" | |
model = YOLO(model_path) | |
def ultralytics_predict(model, frame): | |
confidence_threshold = 0.2 | |
start_time = time.time() | |
results = model(frame) # Perform inference on the frame | |
end_time = time.time() | |
duration = end_time - start_time | |
print(f"Prediction duration: {duration:.4f} seconds") | |
duration_str = f"{duration:.4f} S" | |
object_count = {} # Dictionary to store counts of detected objects | |
for detection in results[0].boxes: # Iterate through detections | |
conf = float(detection.conf[0]) # Confidence score | |
if conf > confidence_threshold: | |
conf, pos, text, color = ultralytics(detection, duration_str) | |
cv2.rectangle(frame, pos[0], pos[1], color, 2) | |
cv2.putText(frame, text, (pos[0][0], pos[0][1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) | |
# Update object count | |
class_id = int(detection.cls[0]) | |
class_name = model.names[class_id] | |
if class_name not in object_count: | |
object_count[class_name] = dict(count=0, objects=[]) | |
object_mapp = object_count[class_name] | |
object_mapp["count"] = object_mapp.get("count", 0) + 1 | |
object_mapp["objects"].append(dict(conf=conf, pos=pos, text=text, color=color)) | |
return frame # Return the count of detected objects | |
def ultralytics(detection, duration): | |
COLOUR_MAP = { | |
0: (0, 0, 255), # Red in BGR format | |
1: (0, 255, 0) # Green in BGR format | |
} | |
conf = float(detection.conf[0]) # Confidence score | |
class_id = int(detection.cls[0]) # Class ID | |
name = model.names[class_id] # Get class name | |
xmin, ymin, xmax, ymax = map(int, detection.xyxy[0]) # Bounding box coordinates | |
color = COLOUR_MAP.get(class_id, (255, 255, 255)) # Default to white if not found | |
# Draw bounding box and label on the frame | |
pos = (xmin, ymin), (xmax, ymax) | |
text = f"{name} {round(conf, 2)} :{duration}" | |
return conf, pos, text, color | |
def process_frame(frame): | |
object_count = ultralytics_predict(model, frame) | |
return frame, object_count # Return frame and object count | |
def detect_image(image): | |
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # Convert to BGR format for OpenCV | |
result_frame, object_count = process_frame(image) | |
result_frame = cv2.cvtColor(result_frame, cv2.COLOR_BGR2RGB) # Convert back to RGB for Gradio | |
return result_frame, object_count # Return both the frame and the count | |
# Create Gradio Interface | |
gr.Interface( | |
fn=detect_image, | |
inputs=gr.Image(type="numpy"), # Updated input format | |
outputs=[ | |
gr.Image(type="numpy"), # Image output | |
gr.JSON(), # Object count output as JSON | |
], | |
title="YOLO Object Detection", | |
description="Upload an image to detect objects using YOLO model." | |
).launch() | |