Spaces:
Running
Running
File size: 989 Bytes
9ad74d6 6aa98a8 9ad74d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Load your trained model and tokenizer from Hugging Face
model_name = "ai4bharat/IndicTrans"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
# Streamlit UI
st.title("Colloquial Language Translator")
st.write("Enter English text to translate into the colloquial language of your choice.")
# User input
input_text = st.text_input("Enter English text:")
# When the button is clicked
if st.button("Translate"):
if input_text:
# Tokenize and generate output
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)
outputs = model.generate(**inputs)
translation = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Display the result
st.success(f"Translation: {translation}")
else:
st.warning("Please enter some text to translate.")
|