import streamlit as st from transformers import MBartForConditionalGeneration, MBart50TokenizerFast # Define model name model_checkpoint = "aryaumesh/english-to-telugu" # Load tokenizer and model tokenizer = MBart50TokenizerFast.from_pretrained(model_checkpoint) model = MBartForConditionalGeneration.from_pretrained(model_checkpoint) # Streamlit UI st.title("English to Telugu Translator") st.write("Enter English text to translate into Telugu.") # User input input_text = st.text_input("Enter English text:") # When the button is clicked if st.button("Translate"): if input_text: # Tokenize and generate output inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True) outputs = model.generate(**inputs) translation = tokenizer.decode(outputs[0], skip_special_tokens=True) # Display the result st.success(f"Translation: {translation}") else: st.warning("Please enter some text to translate.")