Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,94 +1,38 @@
|
|
| 1 |
import os
|
| 2 |
import streamlit as st
|
| 3 |
-
from
|
| 4 |
|
| 5 |
-
#
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
# Specify the repository ID of the Hugging Face model you want to use
|
| 10 |
-
repo_id_mistral = "mistralai/Mistral-7B-Instruct-v0.3"
|
| 11 |
|
| 12 |
# Streamlit app layout
|
| 13 |
-
st.title("๐ค
|
| 14 |
-
|
| 15 |
-
# Input text area for user query with enhanced instructions
|
| 16 |
-
user_query = st.text_area(
|
| 17 |
-
"โจ Enter your magical query:",
|
| 18 |
-
height=100,
|
| 19 |
-
help="""
|
| 20 |
-
**Enhanced Prompting Instructions:**
|
| 21 |
-
- Be clear and specific about what you want to know.
|
| 22 |
-
- Use natural language to describe your query.
|
| 23 |
-
- If asking a question, ensure it is well-formed and unambiguous.
|
| 24 |
-
- For best results, provide context or background information if relevant.
|
| 25 |
-
"""
|
| 26 |
-
)
|
| 27 |
|
| 28 |
-
#
|
| 29 |
-
|
| 30 |
-
"Temperature",
|
| 31 |
-
min_value=0.1,
|
| 32 |
-
max_value=1.0,
|
| 33 |
-
value=0.7,
|
| 34 |
-
step=0.1,
|
| 35 |
-
help="""
|
| 36 |
-
**Temperature:**
|
| 37 |
-
- Lower values (e.g., 0.1) make the output more deterministic and focused.
|
| 38 |
-
- Higher values (e.g., 1.0) make the output more diverse and creative.
|
| 39 |
-
"""
|
| 40 |
-
)
|
| 41 |
|
| 42 |
-
#
|
| 43 |
-
max_length = st.slider(
|
| 44 |
-
"Max Length",
|
| 45 |
-
min_value=32,
|
| 46 |
-
max_value=256,
|
| 47 |
-
value=128,
|
| 48 |
-
step=32,
|
| 49 |
-
help="""
|
| 50 |
-
**Max Length:**
|
| 51 |
-
- Controls the maximum number of tokens in the generated response.
|
| 52 |
-
- Adjust based on the desired length of the response.
|
| 53 |
-
"""
|
| 54 |
-
)
|
| 55 |
|
| 56 |
# Button to trigger the query
|
| 57 |
-
if st.button("๐ช
|
| 58 |
if user_query:
|
| 59 |
-
#
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
)
|
| 66 |
-
|
| 67 |
-
# Invoke the model with the user's query
|
| 68 |
-
response_mistral = llm_mistral.invoke(user_query)
|
| 69 |
|
| 70 |
# Display the response
|
| 71 |
-
st.markdown("๐ฎ
|
| 72 |
-
st.
|
| 73 |
|
| 74 |
-
# Save query and response to session state
|
| 75 |
-
if 'history' not in st.session_state:
|
| 76 |
-
st.session_state.history = []
|
| 77 |
-
st.session_state.history.append((user_query, response_mistral))
|
| 78 |
else:
|
| 79 |
-
st.write("๐จ Please enter a query
|
| 80 |
-
|
| 81 |
-
# Button to clear history
|
| 82 |
-
if st.button("๐๏ธ Clear History"):
|
| 83 |
-
if 'history' in st.session_state:
|
| 84 |
-
st.session_state.history = []
|
| 85 |
-
st.success("History cleared!")
|
| 86 |
|
| 87 |
-
#
|
| 88 |
-
if 'history' in st.session_state:
|
| 89 |
-
st.subheader("๐ Scroll of Spells Cast")
|
| 90 |
-
for query, response_mistral in st.session_state.history:
|
| 91 |
-
st.write(f"**Query:** {query}")
|
| 92 |
-
st.markdown(f"<span class='response'>**Response from Mistral-7B-Instruct-v0.3:** {response_mistral}</span>", unsafe_allow_html=True)
|
| 93 |
-
st.write("---")
|
| 94 |
-
|
|
|
|
| 1 |
import os
|
| 2 |
import streamlit as st
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
|
| 5 |
+
# Load the fine-tuned model and tokenizer
|
| 6 |
+
model_path = "path/to/your/fine-tuned-model"
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 8 |
+
model = AutoModelForCausalLM.from_pretrained(model_path)
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Streamlit app layout
|
| 11 |
+
st.title("๐ค Fine-tuned Arabic Mistral Model ๐ง")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
# Input text area for user query
|
| 14 |
+
user_query = st.text_area("โจ Enter your query in Arabic:", height=100)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
# Sliders for temperature and max length (as in your original code)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
# Button to trigger the query
|
| 19 |
+
if st.button("๐ช Generate Response"):
|
| 20 |
if user_query:
|
| 21 |
+
# Tokenize input and generate response
|
| 22 |
+
inputs = tokenizer(user_query, return_tensors="pt")
|
| 23 |
+
outputs = model.generate(
|
| 24 |
+
inputs.input_ids,
|
| 25 |
+
max_length=max_length,
|
| 26 |
+
temperature=temperature
|
| 27 |
)
|
| 28 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
| 29 |
|
| 30 |
# Display the response
|
| 31 |
+
st.markdown("๐ฎ Response from Fine-tuned Arabic Model:")
|
| 32 |
+
st.write(response)
|
| 33 |
|
| 34 |
+
# Save query and response to session state (as in your original code)
|
|
|
|
|
|
|
|
|
|
| 35 |
else:
|
| 36 |
+
st.write("๐จ Please enter a query.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
# History display and clear button (as in your original code)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|