Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Diabetes.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/15IbzL0ARqBYPhh4fx4KN2rJ62USEmIO2
|
8 |
+
|
9 |
+
Importing the Dependencies
|
10 |
+
"""
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
import pandas as pd
|
14 |
+
from sklearn.preprocessing import StandardScaler
|
15 |
+
from sklearn.model_selection import train_test_split
|
16 |
+
from sklearn import svm
|
17 |
+
from sklearn.metrics import accuracy_score
|
18 |
+
|
19 |
+
"""Data Collection and Analysis
|
20 |
+
|
21 |
+
PIMA Diabetes Dataset
|
22 |
+
"""
|
23 |
+
|
24 |
+
# loading the diabetes dataset to a pandas DataFrame
|
25 |
+
diabetes_dataset = pd.read_csv('/content/diabetes.csv')
|
26 |
+
|
27 |
+
pd.read_csv?
|
28 |
+
|
29 |
+
# printing the first 5 rows of the dataset
|
30 |
+
diabetes_dataset.head()
|
31 |
+
|
32 |
+
# number of rows and Columns in this dataset
|
33 |
+
diabetes_dataset.shape
|
34 |
+
|
35 |
+
# getting the statistical measures of the data
|
36 |
+
diabetes_dataset.describe()
|
37 |
+
|
38 |
+
diabetes_dataset['Outcome'].value_counts()
|
39 |
+
|
40 |
+
"""0 --> Non-Diabetic
|
41 |
+
|
42 |
+
1 --> Diabetic
|
43 |
+
"""
|
44 |
+
|
45 |
+
diabetes_dataset.groupby('Outcome').mean()
|
46 |
+
|
47 |
+
# separating the data and labels
|
48 |
+
X = diabetes_dataset.drop(columns = 'Outcome', axis=1)
|
49 |
+
Y = diabetes_dataset['Outcome']
|
50 |
+
|
51 |
+
print(X)
|
52 |
+
|
53 |
+
print(Y)
|
54 |
+
|
55 |
+
"""Data Standardization"""
|
56 |
+
|
57 |
+
scaler = StandardScaler()
|
58 |
+
|
59 |
+
scaler.fit(X)
|
60 |
+
|
61 |
+
standardized_data = scaler.transform(X)
|
62 |
+
|
63 |
+
print(standardized_data)
|
64 |
+
|
65 |
+
X = standardized_data
|
66 |
+
Y = diabetes_dataset['Outcome']
|
67 |
+
|
68 |
+
print(X)
|
69 |
+
print(Y)
|
70 |
+
|
71 |
+
"""Train Test Split"""
|
72 |
+
|
73 |
+
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size = 0.2, stratify=Y, random_state=2)
|
74 |
+
|
75 |
+
print(X.shape, X_train.shape, X_test.shape)
|
76 |
+
|
77 |
+
"""Training the Model"""
|
78 |
+
|
79 |
+
classifier = svm.SVC(kernel='linear')
|
80 |
+
|
81 |
+
#training the support vector Machine Classifier
|
82 |
+
classifier.fit(X_train, Y_train)
|
83 |
+
|
84 |
+
"""Model Evaluation
|
85 |
+
|
86 |
+
Accuracy Score
|
87 |
+
"""
|
88 |
+
|
89 |
+
# accuracy score on the training data
|
90 |
+
X_train_prediction = classifier.predict(X_train)
|
91 |
+
training_data_accuracy = accuracy_score(X_train_prediction, Y_train)
|
92 |
+
|
93 |
+
print('Accuracy score of the training data : ', training_data_accuracy)
|
94 |
+
|
95 |
+
# accuracy score on the test data
|
96 |
+
X_test_prediction = classifier.predict(X_test)
|
97 |
+
test_data_accuracy = accuracy_score(X_test_prediction, Y_test)
|
98 |
+
|
99 |
+
print('Accuracy score of the test data : ', test_data_accuracy)
|
100 |
+
|
101 |
+
"""Making a Predictive System"""
|
102 |
+
|
103 |
+
def predict(Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age):
|
104 |
+
#input_data = (5,166,72,19,175,25.8,0.587,51)
|
105 |
+
input_data = (Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age)
|
106 |
+
|
107 |
+
|
108 |
+
# changing the input_data to numpy array
|
109 |
+
input_data_as_numpy_array = np.asarray(input_data)
|
110 |
+
|
111 |
+
# reshape the array as we are predicting for one instance
|
112 |
+
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)
|
113 |
+
|
114 |
+
# standardize the input data
|
115 |
+
std_data = scaler.transform(input_data_reshaped)
|
116 |
+
print(std_data)
|
117 |
+
|
118 |
+
prediction = classifier.predict(std_data)
|
119 |
+
#print(prediction)
|
120 |
+
|
121 |
+
if (prediction[0] == 0):
|
122 |
+
print('The person is not diabetic')
|
123 |
+
else:
|
124 |
+
print('The person is diabetic')
|
125 |
+
return prediction
|
126 |
+
|
127 |
+
predict(4,136,64,20,175,25.6,0.597,50)
|
128 |
+
|
129 |
+
!pip install gradio
|
130 |
+
|
131 |
+
import gradio as gr
|
132 |
+
|
133 |
+
|
134 |
+
def dibetis_predict(Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age):
|
135 |
+
#input_data = (5,166,72,19,175,25.8,0.587,51)
|
136 |
+
input_data = (Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age)
|
137 |
+
|
138 |
+
|
139 |
+
# changing the input_data to numpy array
|
140 |
+
input_data_as_numpy_array = np.asarray(input_data)
|
141 |
+
|
142 |
+
# reshape the array as we are predicting for one instance
|
143 |
+
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)
|
144 |
+
|
145 |
+
# standardize the input data
|
146 |
+
std_data = scaler.transform(input_data_reshaped)
|
147 |
+
print(std_data)
|
148 |
+
|
149 |
+
prediction = classifier.predict(std_data)
|
150 |
+
|
151 |
+
if (prediction[0] == 0):
|
152 |
+
print('The person is not diabetic')
|
153 |
+
return 'The person is not diabetic'
|
154 |
+
else:
|
155 |
+
print('The person is diabetic')
|
156 |
+
return 'The person is diabetic'
|
157 |
+
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
demo = gr.Interface(
|
162 |
+
fn=dibetis_predict,
|
163 |
+
inputs = [
|
164 |
+
gr.Slider(1, 20, value=4, label="Pregnancies", info="Choose between 1 and 20"),
|
165 |
+
gr.Slider(1, 200, value=136, label="Glucose", info="Choose between 1 and 200"),
|
166 |
+
gr.Slider(1, 100, value=64, label="BloodPressure", info="Choose between 1 and 100"),
|
167 |
+
gr.Slider(1, 50, value=20, label="SkinThickness", info="Choose between 1 and 50"),
|
168 |
+
gr.Slider(1, 200, value=175, label="Insulin", info="Choose between 1 and 200"),
|
169 |
+
gr.Slider(1, 100, value=25.5, label="BMI", info="Choose between 1 and 100"),
|
170 |
+
gr.Slider(0, 1.0, value=0.549, label="DiabetesPedigreeFunction", info="Choose between 0.0 and 1.0"),
|
171 |
+
gr.Slider(1, 100, value=50, label="Age", info="Choose between 1 and 100"),
|
172 |
+
],
|
173 |
+
outputs = "text",
|
174 |
+
)
|
175 |
+
|
176 |
+
if __name__ == "__main__":
|
177 |
+
demo.launch(share=True)
|
178 |
+
|