File size: 11,265 Bytes
ffd6783 f4b0045 d5a8738 2fd3301 3a4f9a5 b977014 651adc3 a5d11e6 b977014 a5d11e6 21e0c5d 5dec096 a5d11e6 21e0c5d a5d11e6 8299706 36bd00d f4b0045 5dec096 f4b0045 cf7d33a f4b0045 cf7d33a 13769e5 e070e1d c04779d 5dec096 8299706 ffd6783 5dec096 e070e1d ffd6783 c16c7db fcba768 cf7d33a 5dec096 cf7d33a 9d458b0 fe61a21 9d458b0 cf7d33a 9d458b0 cf7d33a 36bd00d d3059d1 36bd00d d3059d1 36bd00d d3059d1 36bd00d d3059d1 8a1628a d3059d1 8a1628a d3059d1 8a1628a 4e81b10 8a1628a 4e81b10 c9d6504 8a1628a 4e81b10 8a1628a 4e81b10 8a1628a 4e81b10 8a1628a 4e81b10 c9d6504 4e81b10 7fe59b4 c9d6504 7fe59b4 97226a3 7fe59b4 97226a3 7fe59b4 ebe4051 4e81b10 72536de ebe4051 4e81b10 8a1628a 4e81b10 8a1628a 4e81b10 8a1628a 4e81b10 8a1628a 376d43e 4e81b10 71e64b5 4e81b10 fbd3955 919420f fbd3955 71e64b5 7fe59b4 8a1628a 7fe59b4 4e81b10 8a1628a 7fe59b4 4e81b10 e2d7755 7fe59b4 f518995 7fe59b4 4e81b10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import streamlit as st
import json
import ee
import os
import pandas as pd
import geopandas as gpd
from datetime import datetime
import leafmap.foliumap as leafmap
# Set up the page layout
st.set_page_config(layout="wide")
# Custom button styling
m = st.markdown(
"""
<style>
div.stButton > button:first-child {
background-color: #006400;
color:#ffffff;
}
</style>""",
unsafe_allow_html=True,
)
# # Logo
# st.write(
# f"""
# <div style="display: flex; justify-content: space-between; align-items: center;">
# <img src="https://huggingface.co/spaces/SustainabilityLabIITGN/NDVI_PERG/resolve/main/Final_IITGN-Logo-symmetric-Color.png" style="width: 10%; margin-right: auto;">
# <img src="https://huggingface.co/spaces/SustainabilityLabIITGN/NDVI_PERG/resolve/main/IFS.jpg" style="width: 10%; margin-left: auto;">
# </div>
# """,
# unsafe_allow_html=True,
# )
# Authenticate and initialize Earth Engine
earthengine_credentials = os.environ.get("EE_Authentication")
# Initialize Earth Engine with secret credentials
os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
f.write(earthengine_credentials)
ee.Initialize(project='ee-yashsacisro24')
# Load Sentinel dataset options from JSON file
with open("sentinel_datasets.json") as f:
data = json.load(f)
# Display the title and dataset selection
st.title("Sentinel Dataset")
# Select dataset category and subcategory
main_selection = st.selectbox("Select Sentinel Dataset Category", list(data.keys()))
if main_selection:
sub_options = data[main_selection]["sub_options"]
sub_selection = st.selectbox("Select Specific Dataset ID", list(sub_options.keys()))
# Earth Engine Index Calculator Section
st.header("Earth Engine Index Calculator")
# Choose Index or Custom Formula
index_choice = st.selectbox("Select an Index or Enter Custom Formula", ['NDVI', 'NDWI', 'Average NO₂', 'Custom Formula'])
# Initialize custom_formula variable
custom_formula = ""
# Display corresponding formula based on the index selected
if index_choice == 'NDVI':
st.write("Formula for NDVI: NDVI = (B8 - B4) / (B8 + B4)")
elif index_choice == 'NDWI':
st.write("Formula for NDWI: NDWI = (B3 - B8) / (B3 + B8)")
elif index_choice == 'Average NO₂':
st.write("Formula for Average NO₂: Average NO₂ = Mean(NO2 band)")
elif index_choice == 'Custom Formula':
custom_formula = st.text_input("Enter Custom Formula (e.g., 'B5 - B4 / B5 + B4')")
st.write(f"Custom Formula: {custom_formula}") # Display the custom formula after the user inputs it
# Function to read points from CSV
def read_csv(file_path):
df = pd.read_csv(file_path)
return df
# Function to read points from GeoJSON
def read_geojson(file_path):
gdf = gpd.read_file(file_path)
return gdf
# Function to read points from KML
def read_kml(file_path):
gdf = gpd.read_file(file_path, driver='KML')
return gdf
# Ask user whether they want to process 'Point' or 'Polygon' data
shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"])
# Ask user to upload a file based on shape type
file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
# Date Input for Start and End Dates
start_date = st.date_input("Start Date", value=pd.to_datetime('2020-01-01'))
end_date = st.date_input("End Date", value=pd.to_datetime('2020-12-31'))
# Convert start_date and end_date to string format for Earth Engine
start_date_str = start_date.strftime('%Y-%m-%d')
end_date_str = end_date.strftime('%Y-%m-%d')
# Initialize session state for storing results if not already done
if 'results' not in st.session_state:
st.session_state.results = []
if 'last_params' not in st.session_state:
st.session_state.last_params = {}
if 'map_data' not in st.session_state:
st.session_state.map_data = None # Initialize map_data
# Function to check if parameters have changed
def parameters_changed():
return (
st.session_state.last_params.get('main_selection') != main_selection or
st.session_state.last_params.get('sub_selection') != sub_selection or
st.session_state.last_params.get('index_choice') != index_choice or
st.session_state.last_params.get('start_date_str') != start_date_str or
st.session_state.last_params.get('end_date_str') != end_date_str
)
# If parameters have changed, reset the results
if parameters_changed():
st.session_state.results = [] # Clear the previous results
# Update the last parameters to the current ones
st.session_state.last_params = {
'main_selection': main_selection,
'sub_selection': sub_selection,
'index_choice': index_choice,
'start_date_str': start_date_str,
'end_date_str': end_date_str
}
# Function to perform index calculations
def calculate_ndvi(image, geometry):
ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
result = ndvi.reduceRegion(
reducer=ee.Reducer.mean(),
geometry=geometry,
scale=30
)
return result.get('NDVI')
def calculate_ndwi(image, geometry):
ndwi = image.normalizedDifference(['B3', 'B8']).rename('NDWI')
result = ndwi.reduceRegion(
reducer=ee.Reducer.mean(),
geometry=geometry,
scale=30
)
return result.get('NDWI')
def calculate_avg_no2_sentinel5p(image, geometry):
no2 = image.select('NO2').reduceRegion(
reducer=ee.Reducer.mean(),
geometry=geometry,
scale=1000
).get('NO2')
return no2
def calculate_custom_formula(image, geometry, formula):
result = image.expression(formula).rename('Custom Index').reduceRegion(
reducer=ee.Reducer.mean(),
geometry=geometry,
scale=30
)
return result.get('Custom Index')
# Process each point
if file_upload:
locations_df = None # Initialize locations_df to None
polygons_df = None # Initialize polygons_df to None
file_extension = os.path.splitext(file_upload.name)[1].lower()
# Read file based on shape type
if shape_type == 'Point':
if file_extension == '.csv':
locations_df = read_csv(file_upload)
elif file_extension == '.geojson':
locations_df = read_geojson(file_upload)
elif file_extension == '.kml':
locations_df = read_kml(file_upload)
else:
st.error("Unsupported file type. Please upload a CSV, GeoJSON, or KML file for points.")
elif shape_type == 'Polygon':
if file_extension == '.geojson':
polygons_df = read_geojson(file_upload)
elif file_extension == '.kml':
polygons_df = read_kml(file_upload)
else:
st.error("Unsupported file type. Please upload a GeoJSON or KML file for polygons.")
if locations_df is not None:
# Display a preview of the points data
st.write("Preview of the uploaded points data:")
st.dataframe(locations_df.head())
# Create a LeafMap object to display the points
m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
# Add points to the map
for _, row in locations_df.iterrows():
m.add_marker(location=[row['latitude'], row['longitude']], popup=row.get('name', 'No Name'))
# Display map
st.write("Map of Uploaded Points:")
m.to_streamlit()
# Store the map in session_state
st.session_state.map_data = m
if polygons_df is not None:
# Display a preview of the polygons data
st.write("Preview of the uploaded polygons data:")
st.dataframe(polygons_df.head())
# Create a LeafMap object to display the polygons
m = leafmap.Map(center=[polygons_df.geometry.centroid.y.mean(), polygons_df.geometry.centroid.x.mean()], zoom=4)
# Plot polygons on the map
for _, row in polygons_df.iterrows():
m.add_geojson(geojson=row['geometry'].__geo_interface__)
# Display map
st.write("Map of Uploaded Polygons:")
m.to_streamlit()
# Store the map in session_state
st.session_state.map_data = m
# Process each point
if locations_df is not None:
for idx, row in locations_df.iterrows():
latitude = row['latitude']
longitude = row['longitude']
location_name = row.get('name', f"Location_{idx}")
# Define the region of interest (ROI)
roi = ee.Geometry.Point([longitude, latitude])
# Load Sentinel-2 image collection
collection = ee.ImageCollection(sub_options[sub_selection]) \
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
.filterBounds(roi)
# Check if the collection has images for the selected date range
image_count = collection.size().getInfo()
if image_count == 0:
st.warning(f"No images found for {location_name}.")
else:
st.write(f"Found {image_count} images for {location_name}.")
image = collection.first()
# Perform the calculation based on user selection
result = None
if index_choice == 'NDVI':
result = calculate_ndvi(image, roi)
elif index_choice == 'NDWI':
result = calculate_ndwi(image, roi)
elif index_choice == 'Average NO₂':
if 'NO2' in image.bandNames().getInfo():
result = calculate_avg_no2_sentinel5p(image, roi)
else:
st.warning(f"No NO2 band found for {location_name}. Please use Sentinel-5P for NO₂ data.")
elif index_choice == 'Custom Formula' and custom_formula:
result = calculate_custom_formula(image, roi, custom_formula)
if result is not None:
# Only store the numeric value (not the dictionary structure)
calculated_value = result.getInfo() # Get the numeric value
# Store the result in session state
st.session_state.results.append({
'Location Name': location_name,
'Latitude': latitude,
'Longitude': longitude,
'Calculated Value': calculated_value
})
# After processing, show the results
if st.session_state.results:
# Convert the results to a DataFrame for better visualization
result_df = pd.DataFrame(st.session_state.results)
# Show the results in a table format
st.write("Processed Results Table:")
st.dataframe(result_df[['Location Name', 'Latitude', 'Longitude', 'Calculated Value']])
# Allow downloading of the results as CSV
st.download_button(
label="Download results as CSV",
data=result_df.to_csv(index=False).encode('utf-8'),
file_name="calculated_results.csv",
mime='text/csv'
)
|