Spaces:
Running
Running
update app.py
Browse files
app.py
CHANGED
@@ -7,8 +7,6 @@ import geopandas as gpd
|
|
7 |
from datetime import datetime
|
8 |
import leafmap.foliumap as leafmap
|
9 |
import re
|
10 |
-
from fastkml import kml
|
11 |
-
from shapely.geometry import Point, Polygon
|
12 |
|
13 |
# Set up the page layout
|
14 |
st.set_page_config(layout="wide")
|
@@ -41,7 +39,8 @@ st.markdown(
|
|
41 |
f"""
|
42 |
<h1 style="text-align: center;">Precision Analysis for Vegetation, Water, and Air Quality</h1>
|
43 |
""",
|
44 |
-
unsafe_allow_html=True
|
|
|
45 |
st.write("<h2><div style='text-align: center;'>User Inputs</div></h2>", unsafe_allow_html=True)
|
46 |
|
47 |
# Authenticate and initialize Earth Engine
|
@@ -88,74 +87,37 @@ elif index_choice.lower() == 'custom formula':
|
|
88 |
custom_formula = st.text_input("Enter Custom Formula (e.g., '(B5 - B4) / (B5 + B4)')")
|
89 |
st.write(f"Custom Formula: {custom_formula}") # Display the custom formula after the user inputs it
|
90 |
|
91 |
-
# Aggregation
|
92 |
-
|
93 |
|
94 |
-
# Function to
|
95 |
-
def
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
# Function to calculate averages for NDVI, NDWI, NO2 based on aggregation type
|
104 |
-
def aggregate_data_daily(collection, roi):
|
105 |
-
def daily_average(image):
|
106 |
-
date = ee.Date(image.get('system:time_start')).format('YYYY-MM-dd')
|
107 |
-
mean_ndvi = image.select('NDVI').reduceRegion(reducer=ee.Reducer.mean(), geometry=roi, scale=30)
|
108 |
-
mean_ndwi = image.select('NDWI').reduceRegion(reducer=ee.Reducer.mean(), geometry=roi, scale=30)
|
109 |
-
return ee.Feature(None, {'date': date, 'mean_ndvi': mean_ndvi.get('NDVI'), 'mean_ndwi': mean_ndwi.get('NDWI')})
|
110 |
-
|
111 |
-
return collection.map(daily_average)
|
112 |
-
|
113 |
-
# Process data based on aggregation choice
|
114 |
-
def process_aggregation(collection, roi):
|
115 |
-
if aggregation_type.lower() == "daily":
|
116 |
-
return aggregate_data_daily(collection, roi)
|
117 |
-
|
118 |
-
# Function to calculate index and return results based on aggregation choice
|
119 |
-
def process_index_calculation(image, roi):
|
120 |
-
result = None
|
121 |
-
if index_choice == 'NDVI':
|
122 |
-
result = calculate_ndvi(image, roi)
|
123 |
-
elif index_choice == 'NDWI':
|
124 |
-
result = calculate_ndwi(image, roi)
|
125 |
-
elif index_choice == 'Average NO₂':
|
126 |
-
result = calculate_avg_no2_sentinel5p(image, roi)
|
127 |
-
elif index_choice.lower() == 'custom formula' and custom_formula:
|
128 |
-
result = process_custom_formula(image, roi, custom_formula)
|
129 |
-
return result
|
130 |
-
|
131 |
-
# Function to read CSV files
|
132 |
-
def read_csv(file):
|
133 |
-
# Assuming the CSV file has 'latitude' and 'longitude' columns
|
134 |
-
df = pd.read_csv(file)
|
135 |
return df
|
136 |
|
137 |
-
# Function to read GeoJSON
|
138 |
-
def read_geojson(
|
139 |
-
|
140 |
-
return
|
141 |
-
|
142 |
-
# Function to read KML
|
143 |
-
def read_kml(
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
return geometries
|
153 |
-
|
154 |
-
# User Input for Geometry Type: Point or Polygon
|
155 |
-
geometry_type = st.selectbox("Select Geometry Type", ["Point", "Polygon"])
|
156 |
-
|
157 |
-
# File upload based on geometry type
|
158 |
-
file_upload = st.file_uploader(f"Upload your {geometry_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
|
159 |
|
160 |
# Date Input for Start and End Dates
|
161 |
start_date = st.date_input("Start Date", value=pd.to_datetime('2020-01-01'))
|
@@ -170,66 +132,197 @@ if 'results' not in st.session_state:
|
|
170 |
st.session_state.results = []
|
171 |
if 'last_params' not in st.session_state:
|
172 |
st.session_state.last_params = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
-
# Process the file based on geometry type (Point or Polygon)
|
175 |
locations_df = None
|
|
|
|
|
|
|
176 |
if file_upload:
|
177 |
file_extension = os.path.splitext(file_upload.name)[1].lower()
|
178 |
|
179 |
-
if
|
180 |
if file_extension == '.csv':
|
181 |
locations_df = read_csv(file_upload)
|
182 |
elif file_extension == '.geojson':
|
183 |
locations_df = read_geojson(file_upload)
|
184 |
elif file_extension == '.kml':
|
185 |
locations_df = read_kml(file_upload)
|
186 |
-
|
187 |
-
|
|
|
188 |
if file_extension == '.geojson':
|
189 |
-
|
190 |
elif file_extension == '.kml':
|
191 |
-
|
|
|
|
|
192 |
|
193 |
if locations_df is not None and not locations_df.empty:
|
194 |
-
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
latitude = row['latitude']
|
197 |
longitude = row['longitude']
|
|
|
|
|
|
|
198 |
roi = ee.Geometry.Point([longitude, latitude])
|
199 |
-
|
200 |
-
#
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
if st.session_state.results:
|
224 |
result_df = pd.DataFrame(st.session_state.results)
|
225 |
-
st.write("Processed Results Table:")
|
226 |
-
st.dataframe(result_df)
|
227 |
|
228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
st.download_button(
|
231 |
label="Download results as CSV",
|
232 |
-
data=
|
233 |
file_name=filename,
|
234 |
mime='text/csv'
|
235 |
)
|
|
|
7 |
from datetime import datetime
|
8 |
import leafmap.foliumap as leafmap
|
9 |
import re
|
|
|
|
|
10 |
|
11 |
# Set up the page layout
|
12 |
st.set_page_config(layout="wide")
|
|
|
39 |
f"""
|
40 |
<h1 style="text-align: center;">Precision Analysis for Vegetation, Water, and Air Quality</h1>
|
41 |
""",
|
42 |
+
unsafe_allow_html=True,
|
43 |
+
)
|
44 |
st.write("<h2><div style='text-align: center;'>User Inputs</div></h2>", unsafe_allow_html=True)
|
45 |
|
46 |
# Authenticate and initialize Earth Engine
|
|
|
87 |
custom_formula = st.text_input("Enter Custom Formula (e.g., '(B5 - B4) / (B5 + B4)')")
|
88 |
st.write(f"Custom Formula: {custom_formula}") # Display the custom formula after the user inputs it
|
89 |
|
90 |
+
# Add Aggregation Option (Daily, Weekly, Monthly, Yearly)
|
91 |
+
aggregation_choice = st.selectbox("Select Aggregation Period", ['Daily', 'Weekly', 'Monthly', 'Yearly'])
|
92 |
|
93 |
+
# Function to check if the polygon geometry is valid and convert it to the correct format
|
94 |
+
def convert_to_ee_geometry(geometry):
|
95 |
+
if geometry.is_valid:
|
96 |
+
geojson = geometry.__geo_interface__
|
97 |
+
return ee.Geometry(geojson)
|
98 |
+
else:
|
99 |
+
raise ValueError("Invalid geometry: The polygon geometry is not valid.")
|
100 |
|
101 |
+
# Function to read points from CSV
|
102 |
+
def read_csv(file_path):
|
103 |
+
df = pd.read_csv(file_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
return df
|
105 |
|
106 |
+
# Function to read points from GeoJSON
|
107 |
+
def read_geojson(file_path):
|
108 |
+
gdf = gpd.read_file(file_path)
|
109 |
+
return gdf
|
110 |
+
|
111 |
+
# Function to read points from KML
|
112 |
+
def read_kml(file_path):
|
113 |
+
gdf = gpd.read_file(file_path, driver='KML')
|
114 |
+
return gdf
|
115 |
+
|
116 |
+
# Ask user whether they want to process 'Point' or 'Polygon' data (case-insensitive)
|
117 |
+
shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"])
|
118 |
+
|
119 |
+
# Ask user to upload a file based on shape type (case-insensitive)
|
120 |
+
file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
# Date Input for Start and End Dates
|
123 |
start_date = st.date_input("Start Date", value=pd.to_datetime('2020-01-01'))
|
|
|
132 |
st.session_state.results = []
|
133 |
if 'last_params' not in st.session_state:
|
134 |
st.session_state.last_params = {}
|
135 |
+
if 'map_data' not in st.session_state:
|
136 |
+
st.session_state.map_data = None # Initialize map_data
|
137 |
+
|
138 |
+
# Function to check if parameters have changed
|
139 |
+
def parameters_changed():
|
140 |
+
return (
|
141 |
+
st.session_state.last_params.get('main_selection') != main_selection or
|
142 |
+
st.session_state.last_params.get('sub_selection') != sub_selection or
|
143 |
+
st.session_state.last_params.get('index_choice') != index_choice or
|
144 |
+
st.session_state.last_params.get('start_date_str') != start_date_str or
|
145 |
+
st.session_state.last_params.get('end_date_str') != end_date_str or
|
146 |
+
st.session_state.last_params.get('shape_type') != shape_type or
|
147 |
+
st.session_state.last_params.get('file_upload') != file_upload or
|
148 |
+
st.session_state.last_params.get('aggregation_choice') != aggregation_choice
|
149 |
+
)
|
150 |
+
|
151 |
+
# If parameters have changed, reset the results
|
152 |
+
if parameters_changed():
|
153 |
+
st.session_state.results = [] # Clear the previous results
|
154 |
+
st.session_state.last_params = {
|
155 |
+
'main_selection': main_selection,
|
156 |
+
'sub_selection': sub_selection,
|
157 |
+
'index_choice': index_choice,
|
158 |
+
'start_date_str': start_date_str,
|
159 |
+
'end_date_str': end_date_str,
|
160 |
+
'shape_type': shape_type,
|
161 |
+
'file_upload': file_upload,
|
162 |
+
'aggregation_choice': aggregation_choice
|
163 |
+
}
|
164 |
+
|
165 |
+
# Function to perform index calculations
|
166 |
+
def calculate_ndvi(image, geometry):
|
167 |
+
ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
|
168 |
+
result = ndvi.reduceRegion(
|
169 |
+
reducer=ee.Reducer.mean(),
|
170 |
+
geometry=geometry,
|
171 |
+
scale=30
|
172 |
+
)
|
173 |
+
return result.get('NDVI')
|
174 |
+
|
175 |
+
def calculate_ndwi(image, geometry):
|
176 |
+
ndwi = image.normalizedDifference(['B3', 'B8']).rename('NDWI')
|
177 |
+
result = ndwi.reduceRegion(
|
178 |
+
reducer=ee.Reducer.mean(),
|
179 |
+
geometry=geometry,
|
180 |
+
scale=30
|
181 |
+
)
|
182 |
+
return result.get('NDWI')
|
183 |
+
|
184 |
+
def calculate_avg_no2_sentinel5p(image, geometry):
|
185 |
+
no2 = image.select('NO2').reduceRegion(
|
186 |
+
reducer=ee.Reducer.mean(),
|
187 |
+
geometry=geometry,
|
188 |
+
scale=1000
|
189 |
+
).get('NO2')
|
190 |
+
return no2
|
191 |
+
|
192 |
+
def calculate_custom_formula(image, geometry, formula, scale=30):
|
193 |
+
band_names = image.bandNames().getInfo()
|
194 |
+
band_dict = {band: image.select(band) for band in band_names}
|
195 |
+
result_image = image.expression(formula, band_dict).rename('CustomResult')
|
196 |
+
|
197 |
+
result = result_image.reduceRegion(
|
198 |
+
reducer=ee.Reducer.mean(),
|
199 |
+
geometry=geometry,
|
200 |
+
scale=scale
|
201 |
+
)
|
202 |
+
return result
|
203 |
+
|
204 |
+
# Function to aggregate results by day, week, month, or year
|
205 |
+
def aggregate_results_by_period(results, aggregation_period):
|
206 |
+
# Convert 'date' column to datetime for proper aggregation
|
207 |
+
results['date'] = pd.to_datetime(results['date'])
|
208 |
+
if aggregation_period == 'Daily':
|
209 |
+
return results.groupby(results['date'].dt.date).mean().reset_index()
|
210 |
+
elif aggregation_period == 'Weekly':
|
211 |
+
return results.groupby(results['date'].dt.to_period('W')).mean().reset_index()
|
212 |
+
elif aggregation_period == 'Monthly':
|
213 |
+
return results.groupby(results['date'].dt.to_period('M')).mean().reset_index()
|
214 |
+
elif aggregation_period == 'Yearly':
|
215 |
+
return results.groupby(results['date'].dt.to_period('A')).mean().reset_index()
|
216 |
+
|
217 |
+
# Function to get the most recent image from the collection
|
218 |
+
def get_most_recent_image(image_collection):
|
219 |
+
image = image_collection.sort('system:time_start', False).first()
|
220 |
+
return image
|
221 |
|
|
|
222 |
locations_df = None
|
223 |
+
polygons_df = None
|
224 |
+
|
225 |
+
# Process each point (with additional checks for file validity)
|
226 |
if file_upload:
|
227 |
file_extension = os.path.splitext(file_upload.name)[1].lower()
|
228 |
|
229 |
+
if shape_type == 'Point':
|
230 |
if file_extension == '.csv':
|
231 |
locations_df = read_csv(file_upload)
|
232 |
elif file_extension == '.geojson':
|
233 |
locations_df = read_geojson(file_upload)
|
234 |
elif file_extension == '.kml':
|
235 |
locations_df = read_kml(file_upload)
|
236 |
+
else:
|
237 |
+
st.error("Unsupported file type. Please upload a CSV, GeoJSON, or KML file for points.")
|
238 |
+
elif shape_type == 'Polygon':
|
239 |
if file_extension == '.geojson':
|
240 |
+
polygons_df = read_geojson(file_upload)
|
241 |
elif file_extension == '.kml':
|
242 |
+
polygons_df = read_kml(file_upload)
|
243 |
+
else:
|
244 |
+
st.error("Unsupported file type. Please upload a GeoJSON or KML file for polygons.")
|
245 |
|
246 |
if locations_df is not None and not locations_df.empty:
|
247 |
+
# Ensure the necessary columns exist in the dataframe
|
248 |
+
if 'latitude' not in locations_df.columns or 'longitude' not in locations_df.columns:
|
249 |
+
st.error("Uploaded file is missing required 'latitude' or 'longitude' columns.")
|
250 |
+
else:
|
251 |
+
# Display a preview of the points data
|
252 |
+
st.write("Preview of the uploaded points data:")
|
253 |
+
st.dataframe(locations_df.head())
|
254 |
+
|
255 |
+
# Process each point for index calculation
|
256 |
+
for idx, row in locations_df.iterrows():
|
257 |
latitude = row['latitude']
|
258 |
longitude = row['longitude']
|
259 |
+
location_name = row.get('name', f"Location_{idx}")
|
260 |
+
|
261 |
+
# Define the region of interest (ROI)
|
262 |
roi = ee.Geometry.Point([longitude, latitude])
|
263 |
+
|
264 |
+
# Load Sentinel-2 image collection
|
265 |
+
collection = ee.ImageCollection(sub_options[sub_selection]) \
|
266 |
+
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
|
267 |
+
.filterBounds(roi)
|
268 |
+
|
269 |
+
# Aggregate results by the chosen period
|
270 |
+
if aggregation_choice == 'Daily':
|
271 |
+
collection = collection.filterDate(ee.Date(start_date_str), ee.Date(end_date_str))
|
272 |
+
elif aggregation_choice == 'Weekly':
|
273 |
+
collection = collection.filterDate(ee.Date(start_date_str), ee.Date(end_date_str))
|
274 |
+
elif aggregation_choice == 'Monthly':
|
275 |
+
collection = collection.filterDate(ee.Date(start_date_str), ee.Date(end_date_str))
|
276 |
+
elif aggregation_choice == 'Yearly':
|
277 |
+
collection = collection.filterDate(ee.Date(start_date_str), ee.Date(end_date_str))
|
278 |
+
|
279 |
+
# Get the most recent image in the collection
|
280 |
+
image = get_most_recent_image(collection)
|
281 |
+
if not image:
|
282 |
+
st.warning(f"No images found for {location_name}.")
|
283 |
+
else:
|
284 |
+
st.write(f"Found images for {location_name}.")
|
285 |
+
# Perform the calculation based on user selection
|
286 |
+
result = None
|
287 |
+
if index_choice == 'NDVI':
|
288 |
+
result = calculate_ndvi(image, roi)
|
289 |
+
elif index_choice == 'NDWI':
|
290 |
+
result = calculate_ndwi(image, roi)
|
291 |
+
elif index_choice == 'Average NO₂':
|
292 |
+
if 'NO2' in image.bandNames().getInfo():
|
293 |
+
result = calculate_avg_no2_sentinel5p(image, roi)
|
294 |
+
else:
|
295 |
+
st.warning(f"No NO2 band found for {location_name}. Please use Sentinel-5P for NO₂ data.")
|
296 |
+
elif index_choice.lower() == 'custom formula' and custom_formula:
|
297 |
+
result = calculate_custom_formula(image, roi, custom_formula)
|
298 |
+
|
299 |
+
if result is not None:
|
300 |
+
# Get the date from the image's metadata
|
301 |
+
date = image.date().format().getInfo()
|
302 |
+
# Append the result with date to the results list
|
303 |
+
st.session_state.results.append({
|
304 |
+
'Location Name': location_name,
|
305 |
+
'Latitude': latitude,
|
306 |
+
'Longitude': longitude,
|
307 |
+
'Date': date,
|
308 |
+
'Calculated Value': result.getInfo()
|
309 |
+
})
|
310 |
+
|
311 |
+
# After processing, show the results
|
312 |
if st.session_state.results:
|
313 |
result_df = pd.DataFrame(st.session_state.results)
|
|
|
|
|
314 |
|
315 |
+
# Aggregate by the selected period
|
316 |
+
aggregated_results = aggregate_results_by_period(result_df, aggregation_choice)
|
317 |
+
|
318 |
+
st.write(f"Processed Results Table ({aggregation_choice}):")
|
319 |
+
st.dataframe(aggregated_results)
|
320 |
+
|
321 |
+
filename = f"{main_selection}_{sub_selection}_{start_date.strftime('%Y/%m/%d')}_{end_date.strftime('%Y/%m/%d')}_{shape_type}_{aggregation_choice}.csv"
|
322 |
|
323 |
st.download_button(
|
324 |
label="Download results as CSV",
|
325 |
+
data=aggregated_results.to_csv(index=False).encode('utf-8'),
|
326 |
file_name=filename,
|
327 |
mime='text/csv'
|
328 |
)
|