YashMK89 commited on
Commit
4e81b10
·
verified ·
1 Parent(s): f518995

update app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -56
app.py CHANGED
@@ -128,19 +128,21 @@ if parameters_changed():
128
  # Function to perform index calculations
129
  def calculate_ndvi(image, geometry):
130
  ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
131
- return ndvi.reduceRegion(
132
  reducer=ee.Reducer.mean(),
133
  geometry=geometry,
134
  scale=30
135
  )
 
136
 
137
  def calculate_ndwi(image, geometry):
138
  ndwi = image.normalizedDifference(['B3', 'B8']).rename('NDWI')
139
- return ndwi.reduceRegion(
140
  reducer=ee.Reducer.mean(),
141
  geometry=geometry,
142
  scale=30
143
  )
 
144
 
145
  def calculate_avg_no2_sentinel5p(image, geometry):
146
  no2 = image.select('NO2').reduceRegion(
@@ -151,13 +153,14 @@ def calculate_avg_no2_sentinel5p(image, geometry):
151
  return no2
152
 
153
  def calculate_custom_formula(image, geometry, formula):
154
- return image.expression(formula).rename('Custom Index').reduceRegion(
155
  reducer=ee.Reducer.mean(),
156
  geometry=geometry,
157
  scale=30
158
  )
 
159
 
160
- # Process each point or polygon
161
  if file_upload:
162
  locations_df = None # Initialize locations_df to None
163
  polygons_df = None # Initialize polygons_df to None
@@ -182,46 +185,49 @@ if file_upload:
182
  else:
183
  st.error("Unsupported file type. Please upload a GeoJSON or KML file for polygons.")
184
 
185
- # Display a preview of the dataframe
186
  if locations_df is not None:
 
187
  st.write("Preview of the uploaded points data:")
188
  st.dataframe(locations_df.head())
189
 
190
- # Check column names in the uploaded data
191
- st.write("Column names in the uploaded data:", locations_df.columns)
192
-
193
- # Check for latitude and longitude columns in different cases
194
- latitude_column = None
195
- longitude_column = None
196
-
197
- for col in locations_df.columns:
198
- if 'lat' in col.lower():
199
- latitude_column = col
200
- if 'lon' in col.lower() or 'long' in col.lower():
201
- longitude_column = col
202
-
203
- if latitude_column is None or longitude_column is None:
204
- st.error("Latitude and/or Longitude columns not found in the uploaded file. Please make sure the data includes these columns.")
205
- else:
206
- # Create a LeafMap object to display the points
207
- m = leafmap.Map(center=[locations_df[latitude_column].mean(), locations_df[longitude_column].mean()], zoom=10)
 
 
 
208
 
209
- # Add points to the map
210
- for _, row in locations_df.iterrows():
211
- m.add_marker(location=[row[latitude_column], row[longitude_column]], popup=row.get('name', 'No Name'))
212
 
213
- # Display map
214
- st.write("Map of Uploaded Points:")
215
- m.to_streamlit()
216
 
217
- # Store the map in session_state
218
- st.session_state.map_data = m
219
 
220
  # Process each point
221
- if locations_df is not None and latitude_column and longitude_column:
222
  for idx, row in locations_df.iterrows():
223
- latitude = row[latitude_column]
224
- longitude = row[longitude_column]
225
  location_name = row.get('name', f"Location_{idx}")
226
 
227
  # Define the region of interest (ROI)
@@ -241,6 +247,7 @@ if file_upload:
241
  image = collection.first()
242
 
243
  # Perform the calculation based on user selection
 
244
  if index_choice == 'NDVI':
245
  result = calculate_ndvi(image, roi)
246
  elif index_choice == 'NDWI':
@@ -250,13 +257,13 @@ if file_upload:
250
  result = calculate_avg_no2_sentinel5p(image, roi)
251
  else:
252
  st.warning(f"No NO2 band found for {location_name}. Please use Sentinel-5P for NO₂ data.")
253
- result = None
254
  elif index_choice == 'Custom Formula' and custom_formula:
255
  result = calculate_custom_formula(image, roi, custom_formula)
256
 
257
- if result:
258
- # Extract just the numeric value, not the dictionary with 'NDVI' label
259
- calculated_value = result.getInfo()
 
260
  # Store the result in session state
261
  st.session_state.results.append({
262
  'Location Name': location_name,
@@ -265,21 +272,19 @@ if file_upload:
265
  'Calculated Value': calculated_value
266
  })
267
 
268
-
269
- # Generate the dynamic filename
270
- filename = f"{main_selection}_{sub_selection}_{start_date.strftime('%Y/%m/%d')}_{end_date.strftime('%Y/%m/%d')}_{shape_type}.csv"
271
-
272
- if st.session_state.results:
273
- # Convert the results to a DataFrame for better visualization
274
- result_df = pd.DataFrame(st.session_state.results)
275
-
276
- # Show the results in a table format
277
- st.write("Processed Results Table:")
278
- st.dataframe(result_df)
279
-
280
- st.download_button(
281
- label="Download results as CSV",
282
- data=result_df.to_csv(index=False).encode('utf-8'),
283
- file_name=filename,
284
- mime='text/csv'
285
- )
 
128
  # Function to perform index calculations
129
  def calculate_ndvi(image, geometry):
130
  ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
131
+ result = ndvi.reduceRegion(
132
  reducer=ee.Reducer.mean(),
133
  geometry=geometry,
134
  scale=30
135
  )
136
+ return result.get('NDVI')
137
 
138
  def calculate_ndwi(image, geometry):
139
  ndwi = image.normalizedDifference(['B3', 'B8']).rename('NDWI')
140
+ result = ndwi.reduceRegion(
141
  reducer=ee.Reducer.mean(),
142
  geometry=geometry,
143
  scale=30
144
  )
145
+ return result.get('NDWI')
146
 
147
  def calculate_avg_no2_sentinel5p(image, geometry):
148
  no2 = image.select('NO2').reduceRegion(
 
153
  return no2
154
 
155
  def calculate_custom_formula(image, geometry, formula):
156
+ result = image.expression(formula).rename('Custom Index').reduceRegion(
157
  reducer=ee.Reducer.mean(),
158
  geometry=geometry,
159
  scale=30
160
  )
161
+ return result.get('Custom Index')
162
 
163
+ # Process each point
164
  if file_upload:
165
  locations_df = None # Initialize locations_df to None
166
  polygons_df = None # Initialize polygons_df to None
 
185
  else:
186
  st.error("Unsupported file type. Please upload a GeoJSON or KML file for polygons.")
187
 
 
188
  if locations_df is not None:
189
+ # Display a preview of the points data
190
  st.write("Preview of the uploaded points data:")
191
  st.dataframe(locations_df.head())
192
 
193
+ # Create a LeafMap object to display the points
194
+ m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
195
+
196
+ # Add points to the map
197
+ for _, row in locations_df.iterrows():
198
+ m.add_marker(location=[row['latitude'], row['longitude']], popup=row.get('name', 'No Name'))
199
+
200
+ # Display map
201
+ st.write("Map of Uploaded Points:")
202
+ m.to_streamlit()
203
+
204
+ # Store the map in session_state
205
+ st.session_state.map_data = m
206
+
207
+ if polygons_df is not None:
208
+ # Display a preview of the polygons data
209
+ st.write("Preview of the uploaded polygons data:")
210
+ st.dataframe(polygons_df.head())
211
+
212
+ # Create a LeafMap object to display the polygons
213
+ m = leafmap.Map(center=[polygons_df.geometry.centroid.y.mean(), polygons_df.geometry.centroid.x.mean()], zoom=4)
214
 
215
+ # Plot polygons on the map
216
+ for _, row in polygons_df.iterrows():
217
+ m.add_geojson(geojson=row['geometry'].__geo_interface__)
218
 
219
+ # Display map
220
+ st.write("Map of Uploaded Polygons:")
221
+ m.to_streamlit()
222
 
223
+ # Store the map in session_state
224
+ st.session_state.map_data = m
225
 
226
  # Process each point
227
+ if locations_df is not None:
228
  for idx, row in locations_df.iterrows():
229
+ latitude = row['latitude']
230
+ longitude = row['longitude']
231
  location_name = row.get('name', f"Location_{idx}")
232
 
233
  # Define the region of interest (ROI)
 
247
  image = collection.first()
248
 
249
  # Perform the calculation based on user selection
250
+ result = None
251
  if index_choice == 'NDVI':
252
  result = calculate_ndvi(image, roi)
253
  elif index_choice == 'NDWI':
 
257
  result = calculate_avg_no2_sentinel5p(image, roi)
258
  else:
259
  st.warning(f"No NO2 band found for {location_name}. Please use Sentinel-5P for NO₂ data.")
 
260
  elif index_choice == 'Custom Formula' and custom_formula:
261
  result = calculate_custom_formula(image, roi, custom_formula)
262
 
263
+ if result is not None:
264
+ # Only store the numeric value (not the dictionary structure)
265
+ calculated_value = result.getInfo() # Get the numeric value
266
+
267
  # Store the result in session state
268
  st.session_state.results.append({
269
  'Location Name': location_name,
 
272
  'Calculated Value': calculated_value
273
  })
274
 
275
+ # After processing, show the results
276
+ if st.session_state.results:
277
+ # Convert the results to a DataFrame for better visualization
278
+ result_df = pd.DataFrame(st.session_state.results)
279
+
280
+ # Show the results in a table format
281
+ st.write("Processed Results Table:")
282
+ st.dataframe(result_df[['Location Name', 'Latitude', 'Longitude', 'Calculated Value']])
283
+
284
+ # Allow downloading of the results as CSV
285
+ st.download_button(
286
+ label="Download results as CSV",
287
+ data=result_df.to_csv(index=False).encode('utf-8'),
288
+ file_name="calculated_results.csv",
289
+ mime='text/csv'
290
+ )