update app.py
Browse files
app.py
CHANGED
@@ -8,9 +8,10 @@ import pandas as pd
|
|
8 |
import geopandas as gpd
|
9 |
from shapely.geometry import Point
|
10 |
|
|
|
11 |
st.set_page_config(layout="wide")
|
12 |
|
13 |
-
# Custom styling
|
14 |
m = st.markdown(
|
15 |
"""
|
16 |
<style>
|
@@ -25,7 +26,7 @@ m = st.markdown(
|
|
25 |
# Authenticate and initialize Earth Engine
|
26 |
earthengine_credentials = os.environ.get("EE_Authentication")
|
27 |
|
28 |
-
# Initialize Earth Engine with
|
29 |
os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
|
30 |
with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
|
31 |
f.write(earthengine_credentials)
|
@@ -36,13 +37,12 @@ ee.Initialize(project='ee-yashsacisro24')
|
|
36 |
with open("sentinel_datasets.json") as f:
|
37 |
data = json.load(f)
|
38 |
|
39 |
-
# Display title and dataset selection
|
40 |
st.title("Sentinel Dataset and Index Calculator")
|
41 |
|
42 |
-
#
|
43 |
main_selection = st.selectbox("Select Sentinel Dataset Category", list(data.keys()))
|
44 |
|
45 |
-
# Step 2: Display sub-options based on main selection
|
46 |
if main_selection:
|
47 |
sub_options = data[main_selection]["sub_options"]
|
48 |
sub_selection = st.selectbox("Select Specific Dataset ID", list(sub_options.keys()))
|
@@ -50,93 +50,88 @@ if main_selection:
|
|
50 |
# Earth Engine Index Calculator Section
|
51 |
st.header("Earth Engine Index Calculator")
|
52 |
|
53 |
-
#
|
54 |
index_choice = st.selectbox("Select an Index or Enter Custom Formula", ['NDVI', 'NDWI', 'Average NO₂', 'Custom Formula'])
|
55 |
|
56 |
-
#
|
57 |
custom_formula = ""
|
58 |
if index_choice == 'Custom Formula':
|
59 |
custom_formula = st.text_input("Enter Custom Formula (e.g., 'B5 - B4 / B5 + B4')")
|
60 |
|
61 |
-
#
|
62 |
geometry_type = st.selectbox("Select Geometry Type", ['Point', 'Polygon'])
|
63 |
|
64 |
-
#
|
65 |
if geometry_type == 'Point':
|
66 |
uploaded_file = st.file_uploader("Upload a CSV, GeoJSON, or KML file with Point Data", type=["csv", "geojson", "kml"])
|
67 |
else:
|
68 |
uploaded_file = st.file_uploader("Upload a GeoJSON or KML file with Polygon Data", type=["geojson", "kml"])
|
69 |
|
70 |
-
# Function to get
|
71 |
def get_user_points(uploaded_file):
|
72 |
points = []
|
73 |
if uploaded_file.name.endswith('.csv'):
|
74 |
-
# Read CSV file
|
75 |
df = pd.read_csv(uploaded_file)
|
76 |
for _, row in df.iterrows():
|
77 |
lat = row['latitude']
|
78 |
lon = row['longitude']
|
79 |
# Check for NaN values
|
80 |
if pd.isna(lat) or pd.isna(lon):
|
81 |
-
continue
|
82 |
-
name = row.get('name', f"Location {len(points) + 1}")
|
83 |
points.append({"geometry": ee.Geometry.Point([lon, lat]), "name": name})
|
84 |
-
|
85 |
elif uploaded_file.name.endswith('.geojson'):
|
86 |
-
# Read GeoJSON file
|
87 |
geojson_data = json.load(uploaded_file)
|
88 |
for feature in geojson_data['features']:
|
89 |
lat, lon = feature['geometry']['coordinates']
|
90 |
# Check for NaN values
|
91 |
if lat is None or lon is None:
|
92 |
-
continue
|
93 |
name = feature.get('properties', {}).get('Name', f"Location {len(points) + 1}")
|
94 |
points.append({"geometry": ee.Geometry.Point([lon, lat]), "name": name})
|
95 |
-
|
96 |
elif uploaded_file.name.endswith('.kml'):
|
97 |
-
# Read KML file
|
98 |
gdf = gpd.read_file(uploaded_file)
|
99 |
for _, row in gdf.iterrows():
|
100 |
lat = row.geometry.y
|
101 |
lon = row.geometry.x
|
102 |
# Check for NaN values
|
103 |
if pd.isna(lat) or pd.isna(lon):
|
104 |
-
continue
|
105 |
name = row.get('name', f"Location {len(points) + 1}")
|
106 |
points.append({"geometry": ee.Geometry.Point([lon, lat]), "name": name})
|
107 |
-
|
108 |
return points
|
109 |
|
110 |
-
# Function to get
|
111 |
def get_user_polygons(uploaded_file):
|
112 |
polygons = []
|
113 |
if uploaded_file.name.endswith('.geojson'):
|
114 |
-
# Read GeoJSON file
|
115 |
geojson_data = json.load(uploaded_file)
|
116 |
for feature in geojson_data['features']:
|
117 |
if feature['geometry']['type'] in ['Polygon', 'MultiPolygon']:
|
118 |
geom = ee.Geometry(feature['geometry'])
|
119 |
name = feature.get('properties', {}).get('Name', f"Polygon {len(polygons) + 1}")
|
120 |
polygons.append({"geometry": geom, "name": name})
|
121 |
-
|
122 |
elif uploaded_file.name.endswith('.kml'):
|
123 |
-
# Read KML file
|
124 |
gdf = gpd.read_file(uploaded_file)
|
125 |
for _, row in gdf.iterrows():
|
126 |
geom = row.geometry
|
127 |
if geom.geom_type in ['Polygon', 'MultiPolygon']:
|
128 |
name = row.get('name', f"Polygon {len(polygons) + 1}")
|
129 |
polygons.append({"geometry": ee.Geometry(geom), "name": name})
|
130 |
-
|
131 |
return polygons
|
132 |
|
133 |
-
#
|
134 |
if uploaded_file is not None:
|
135 |
if geometry_type == 'Point':
|
136 |
points = get_user_points(uploaded_file)
|
137 |
if points:
|
138 |
st.write(f"Loaded {len(points)} points.")
|
139 |
-
points_df = pd.DataFrame([{'Latitude': point['geometry'].coordinates().get(0),
|
140 |
'Longitude': point['geometry'].coordinates().get(1),
|
141 |
'Name': point['name']} for point in points])
|
142 |
st.write("Points from file:", points_df)
|
@@ -154,17 +149,7 @@ if uploaded_file is not None:
|
|
154 |
else:
|
155 |
geometries = []
|
156 |
|
157 |
-
#
|
158 |
-
if len(geometries) > 0 and geometry_type == 'Point':
|
159 |
-
# Show points on map using geemap
|
160 |
-
Map = geemap.Map()
|
161 |
-
Map.setCenter(-100.0, 40.0, 4) # Adjusted for example
|
162 |
-
for point in points:
|
163 |
-
Map.add_marker(location=[point['geometry'].coordinates().get(1), point['geometry'].coordinates().get(0)],
|
164 |
-
popup=point['name'])
|
165 |
-
Map.to_streamlit(height=600)
|
166 |
-
|
167 |
-
# Define functions for index calculations
|
168 |
def calculate_ndvi(image, geometry):
|
169 |
return image.normalizedDifference(['B5', 'B4']).rename('NDVI').reduceRegion(
|
170 |
reducer=ee.Reducer.mean(),
|
@@ -193,7 +178,7 @@ def calculate_custom_formula(image, geometry, formula):
|
|
193 |
scale=30
|
194 |
)
|
195 |
|
196 |
-
# Step
|
197 |
if st.button("Calculate Index"):
|
198 |
if geometries:
|
199 |
try:
|
|
|
8 |
import geopandas as gpd
|
9 |
from shapely.geometry import Point
|
10 |
|
11 |
+
# Set the page layout
|
12 |
st.set_page_config(layout="wide")
|
13 |
|
14 |
+
# Custom button styling
|
15 |
m = st.markdown(
|
16 |
"""
|
17 |
<style>
|
|
|
26 |
# Authenticate and initialize Earth Engine
|
27 |
earthengine_credentials = os.environ.get("EE_Authentication")
|
28 |
|
29 |
+
# Initialize Earth Engine with secret credentials
|
30 |
os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
|
31 |
with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
|
32 |
f.write(earthengine_credentials)
|
|
|
37 |
with open("sentinel_datasets.json") as f:
|
38 |
data = json.load(f)
|
39 |
|
40 |
+
# Display the title and dataset selection
|
41 |
st.title("Sentinel Dataset and Index Calculator")
|
42 |
|
43 |
+
# Select dataset category and subcategory
|
44 |
main_selection = st.selectbox("Select Sentinel Dataset Category", list(data.keys()))
|
45 |
|
|
|
46 |
if main_selection:
|
47 |
sub_options = data[main_selection]["sub_options"]
|
48 |
sub_selection = st.selectbox("Select Specific Dataset ID", list(sub_options.keys()))
|
|
|
50 |
# Earth Engine Index Calculator Section
|
51 |
st.header("Earth Engine Index Calculator")
|
52 |
|
53 |
+
# Choose Index or Custom Formula
|
54 |
index_choice = st.selectbox("Select an Index or Enter Custom Formula", ['NDVI', 'NDWI', 'Average NO₂', 'Custom Formula'])
|
55 |
|
56 |
+
# Enter custom formula if selected
|
57 |
custom_formula = ""
|
58 |
if index_choice == 'Custom Formula':
|
59 |
custom_formula = st.text_input("Enter Custom Formula (e.g., 'B5 - B4 / B5 + B4')")
|
60 |
|
61 |
+
# Select Geometry Type (Point or Polygon)
|
62 |
geometry_type = st.selectbox("Select Geometry Type", ['Point', 'Polygon'])
|
63 |
|
64 |
+
# File uploader for Point or Polygon geometry
|
65 |
if geometry_type == 'Point':
|
66 |
uploaded_file = st.file_uploader("Upload a CSV, GeoJSON, or KML file with Point Data", type=["csv", "geojson", "kml"])
|
67 |
else:
|
68 |
uploaded_file = st.file_uploader("Upload a GeoJSON or KML file with Polygon Data", type=["geojson", "kml"])
|
69 |
|
70 |
+
# Function to get user points from CSV, GeoJSON, or KML file
|
71 |
def get_user_points(uploaded_file):
|
72 |
points = []
|
73 |
if uploaded_file.name.endswith('.csv'):
|
|
|
74 |
df = pd.read_csv(uploaded_file)
|
75 |
for _, row in df.iterrows():
|
76 |
lat = row['latitude']
|
77 |
lon = row['longitude']
|
78 |
# Check for NaN values
|
79 |
if pd.isna(lat) or pd.isna(lon):
|
80 |
+
continue
|
81 |
+
name = row.get('name', f"Location {len(points) + 1}")
|
82 |
points.append({"geometry": ee.Geometry.Point([lon, lat]), "name": name})
|
83 |
+
|
84 |
elif uploaded_file.name.endswith('.geojson'):
|
|
|
85 |
geojson_data = json.load(uploaded_file)
|
86 |
for feature in geojson_data['features']:
|
87 |
lat, lon = feature['geometry']['coordinates']
|
88 |
# Check for NaN values
|
89 |
if lat is None or lon is None:
|
90 |
+
continue
|
91 |
name = feature.get('properties', {}).get('Name', f"Location {len(points) + 1}")
|
92 |
points.append({"geometry": ee.Geometry.Point([lon, lat]), "name": name})
|
93 |
+
|
94 |
elif uploaded_file.name.endswith('.kml'):
|
|
|
95 |
gdf = gpd.read_file(uploaded_file)
|
96 |
for _, row in gdf.iterrows():
|
97 |
lat = row.geometry.y
|
98 |
lon = row.geometry.x
|
99 |
# Check for NaN values
|
100 |
if pd.isna(lat) or pd.isna(lon):
|
101 |
+
continue
|
102 |
name = row.get('name', f"Location {len(points) + 1}")
|
103 |
points.append({"geometry": ee.Geometry.Point([lon, lat]), "name": name})
|
104 |
+
|
105 |
return points
|
106 |
|
107 |
+
# Function to get user polygons from GeoJSON or KML file
|
108 |
def get_user_polygons(uploaded_file):
|
109 |
polygons = []
|
110 |
if uploaded_file.name.endswith('.geojson'):
|
|
|
111 |
geojson_data = json.load(uploaded_file)
|
112 |
for feature in geojson_data['features']:
|
113 |
if feature['geometry']['type'] in ['Polygon', 'MultiPolygon']:
|
114 |
geom = ee.Geometry(feature['geometry'])
|
115 |
name = feature.get('properties', {}).get('Name', f"Polygon {len(polygons) + 1}")
|
116 |
polygons.append({"geometry": geom, "name": name})
|
117 |
+
|
118 |
elif uploaded_file.name.endswith('.kml'):
|
|
|
119 |
gdf = gpd.read_file(uploaded_file)
|
120 |
for _, row in gdf.iterrows():
|
121 |
geom = row.geometry
|
122 |
if geom.geom_type in ['Polygon', 'MultiPolygon']:
|
123 |
name = row.get('name', f"Polygon {len(polygons) + 1}")
|
124 |
polygons.append({"geometry": ee.Geometry(geom), "name": name})
|
125 |
+
|
126 |
return polygons
|
127 |
|
128 |
+
# Parse the file and get geometries (points or polygons)
|
129 |
if uploaded_file is not None:
|
130 |
if geometry_type == 'Point':
|
131 |
points = get_user_points(uploaded_file)
|
132 |
if points:
|
133 |
st.write(f"Loaded {len(points)} points.")
|
134 |
+
points_df = pd.DataFrame([{'Latitude': point['geometry'].coordinates().get(0),
|
135 |
'Longitude': point['geometry'].coordinates().get(1),
|
136 |
'Name': point['name']} for point in points])
|
137 |
st.write("Points from file:", points_df)
|
|
|
149 |
else:
|
150 |
geometries = []
|
151 |
|
152 |
+
# Function for index calculation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
def calculate_ndvi(image, geometry):
|
154 |
return image.normalizedDifference(['B5', 'B4']).rename('NDVI').reduceRegion(
|
155 |
reducer=ee.Reducer.mean(),
|
|
|
178 |
scale=30
|
179 |
)
|
180 |
|
181 |
+
# Step: Perform the calculation based on user choice
|
182 |
if st.button("Calculate Index"):
|
183 |
if geometries:
|
184 |
try:
|