Spaces:
Running
Running
update app.py
Browse files
app.py
CHANGED
@@ -53,24 +53,32 @@ with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
|
|
53 |
|
54 |
ee.Initialize(project='ee-yashsacisro24')
|
55 |
|
56 |
-
# Load Sentinel dataset options from JSON file
|
57 |
with open("sentinel_datasets.json") as f:
|
58 |
data = json.load(f)
|
59 |
|
60 |
-
# Display the title
|
61 |
st.title("Sentinel Dataset")
|
62 |
|
63 |
-
# Select dataset category
|
64 |
main_selection = st.selectbox("Select Sentinel Dataset Category", list(data.keys()))
|
65 |
|
|
|
66 |
if main_selection:
|
67 |
sub_options = data[main_selection]["sub_options"]
|
68 |
sub_selection = st.selectbox("Select Specific Dataset ID", list(sub_options.keys()))
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
# Earth Engine Index Calculator Section
|
71 |
st.header("Earth Engine Index Calculator")
|
72 |
|
73 |
-
# Choose Index or Custom Formula (case-insensitive)
|
74 |
index_choice = st.selectbox("Select an Index or Enter Custom Formula", ['NDVI', 'NDWI', 'Average NO₂', 'Custom Formula'])
|
75 |
|
76 |
# Initialize custom_formula variable
|
@@ -84,10 +92,31 @@ elif index_choice.lower() == 'ndwi':
|
|
84 |
elif index_choice.lower() == 'average no₂':
|
85 |
st.write("Formula for Average NO₂: Average NO₂ = Mean(NO2 band)")
|
86 |
elif index_choice.lower() == 'custom formula':
|
87 |
-
custom_formula = st.text_input("Enter Custom Formula (e.g.,
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
#
|
91 |
reducer_choice = st.selectbox(
|
92 |
"Select Reducer",
|
93 |
['mean', 'sum', 'median', 'min', 'max', 'count'],
|
@@ -123,6 +152,93 @@ shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", [
|
|
123 |
# Ask user to upload a file based on shape type (case-insensitive)
|
124 |
file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
|
125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
# Date Input for Start and End Dates
|
127 |
start_date = st.date_input("Start Date", value=pd.to_datetime('2020-01-01'))
|
128 |
end_date = st.date_input("End Date", value=pd.to_datetime('2020-12-31'))
|
@@ -131,6 +247,9 @@ end_date = st.date_input("End Date", value=pd.to_datetime('2020-12-31'))
|
|
131 |
start_date_str = start_date.strftime('%Y-%m-%d')
|
132 |
end_date_str = end_date.strftime('%Y-%m-%d')
|
133 |
|
|
|
|
|
|
|
134 |
# Initialize session state for storing results if not already done
|
135 |
if 'results' not in st.session_state:
|
136 |
st.session_state.results = []
|
@@ -143,7 +262,7 @@ if 'map_data' not in st.session_state:
|
|
143 |
def parameters_changed():
|
144 |
return (
|
145 |
st.session_state.last_params.get('main_selection') != main_selection or
|
146 |
-
st.session_state.last_params.get('
|
147 |
st.session_state.last_params.get('index_choice') != index_choice or
|
148 |
st.session_state.last_params.get('start_date_str') != start_date_str or
|
149 |
st.session_state.last_params.get('end_date_str') != end_date_str or
|
@@ -156,7 +275,7 @@ if parameters_changed():
|
|
156 |
st.session_state.results = [] # Clear the previous results
|
157 |
st.session_state.last_params = {
|
158 |
'main_selection': main_selection,
|
159 |
-
'
|
160 |
'index_choice': index_choice,
|
161 |
'start_date_str': start_date_str,
|
162 |
'end_date_str': end_date_str,
|
@@ -164,339 +283,374 @@ if parameters_changed():
|
|
164 |
'file_upload': file_upload
|
165 |
}
|
166 |
|
167 |
-
# Function to
|
168 |
-
def
|
169 |
-
"""
|
170 |
-
Map user-friendly reducer names to Earth Engine reducer objects.
|
171 |
-
|
172 |
-
Args:
|
173 |
-
reducer_name (str): The name of the reducer (e.g., 'mean', 'sum', 'median').
|
174 |
-
|
175 |
-
Returns:
|
176 |
-
ee.Reducer: The corresponding Earth Engine reducer.
|
177 |
-
"""
|
178 |
-
reducers = {
|
179 |
-
'mean': ee.Reducer.mean(),
|
180 |
-
'sum': ee.Reducer.sum(),
|
181 |
-
'median': ee.Reducer.median(),
|
182 |
-
'min': ee.Reducer.min(),
|
183 |
-
'max': ee.Reducer.max(),
|
184 |
-
'count': ee.Reducer.count(),
|
185 |
-
}
|
186 |
-
|
187 |
-
# Default to 'mean' if the reducer_name is not recognized
|
188 |
-
return reducers.get(reducer_name.lower(), ee.Reducer.mean())
|
189 |
-
|
190 |
-
# Function to calculate NDVI
|
191 |
-
def calculate_ndvi(image, geometry):
|
192 |
ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
|
193 |
-
|
194 |
-
# Perform reduction on the region with the selected reducer
|
195 |
-
result = ndvi.reduceRegion(
|
196 |
-
reducer=get_reducer(reducer_choice),
|
197 |
-
geometry=geometry,
|
198 |
-
scale=30
|
199 |
-
)
|
200 |
-
|
201 |
-
# Output debugging information
|
202 |
-
result_value = result.get('NDVI')
|
203 |
-
try:
|
204 |
-
calculated_value = result_value.getInfo()
|
205 |
-
st.write(f"NDVI calculation using {reducer_choice}: {calculated_value}")
|
206 |
-
except Exception as e:
|
207 |
-
st.error(f"Error retrieving NDVI result: {e}")
|
208 |
-
|
209 |
-
return result_value
|
210 |
-
|
211 |
|
212 |
# Function to calculate NDWI
|
213 |
-
def calculate_ndwi(image, geometry):
|
214 |
ndwi = image.normalizedDifference(['B3', 'B8']).rename('NDWI')
|
215 |
-
|
216 |
-
reducer=get_reducer(reducer_choice),
|
217 |
-
geometry=geometry,
|
218 |
-
scale=30
|
219 |
-
)
|
220 |
-
|
221 |
-
# Output debugging information
|
222 |
-
result_value = result.get('NDWI')
|
223 |
-
try:
|
224 |
-
calculated_value = result_value.getInfo()
|
225 |
-
st.write(f"NDVI calculation using {reducer_choice}: {calculated_value}")
|
226 |
-
except Exception as e:
|
227 |
-
st.error(f"Error retrieving NDVI result: {e}")
|
228 |
-
|
229 |
-
return result_value
|
230 |
-
|
231 |
-
# Function to calculate Average NO₂ for Sentinel-5P
|
232 |
-
def calculate_avg_no2_sentinel5p(image, geometry):
|
233 |
-
no2 = image.select('NO2').reduceRegion(
|
234 |
-
reducer=get_reducer(reducer_choice),
|
235 |
-
geometry=geometry,
|
236 |
-
scale=1000
|
237 |
-
)
|
238 |
-
|
239 |
-
# Output debugging information
|
240 |
-
result_value = result.get('NDVI')
|
241 |
-
try:
|
242 |
-
calculated_value = result_value.getInfo()
|
243 |
-
st.write(f"NDVI calculation using {reducer_choice}: {calculated_value}")
|
244 |
-
except Exception as e:
|
245 |
-
st.error(f"Error retrieving NDVI result: {e}")
|
246 |
-
|
247 |
-
return result_value
|
248 |
|
249 |
-
|
250 |
-
def calculate_custom_formula(image, geometry, formula, scale=30):
|
251 |
-
"""
|
252 |
-
Calculate a custom formula on an image and return the result for a given geometry,
|
253 |
-
using a user-specified reducer.
|
254 |
-
"""
|
255 |
-
# Dynamically generate the dictionary of band references from the image
|
256 |
-
band_names = image.bandNames().getInfo()
|
257 |
-
band_dict = {band: image.select(band) for band in band_names}
|
258 |
|
259 |
-
#
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
reducer=get_reducer(reducer_choice),
|
265 |
-
geometry=geometry,
|
266 |
-
scale=scale
|
267 |
-
)
|
268 |
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
st.write(f"NDVI calculation using {reducer_choice}: {calculated_value}")
|
274 |
-
except Exception as e:
|
275 |
-
st.error(f"Error retrieving NDVI result: {e}")
|
276 |
|
277 |
-
|
278 |
-
|
279 |
-
# Function to get the most recent image from the collection
|
280 |
-
def get_most_recent_image(image_collection):
|
281 |
-
image = image_collection.sort('system:time_start', False).first()
|
282 |
-
return image
|
283 |
-
|
284 |
-
|
285 |
-
# Function to process the custom formula
|
286 |
-
def process_custom_formula(image, geometry, formula):
|
287 |
-
return calculate_custom_formula(image, geometry, formula)
|
288 |
|
289 |
-
|
290 |
-
|
|
|
|
|
|
|
291 |
|
292 |
-
#
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
# polygons_df = None # Ensure polygons_df is initialized at the beginning
|
297 |
-
|
298 |
-
file_extension = os.path.splitext(file_upload.name)[1].lower()
|
299 |
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
elif file_extension == '.kml':
|
307 |
-
locations_df = read_kml(file_upload)
|
308 |
-
else:
|
309 |
-
st.error("Unsupported file type. Please upload a CSV, GeoJSON, or KML file for points.")
|
310 |
-
elif shape_type == 'Polygon':
|
311 |
-
if file_extension == '.geojson':
|
312 |
-
polygons_df = read_geojson(file_upload)
|
313 |
-
elif file_extension == '.kml':
|
314 |
-
polygons_df = read_kml(file_upload)
|
315 |
-
else:
|
316 |
-
st.error("Unsupported file type. Please upload a GeoJSON or KML file for polygons.")
|
317 |
|
|
|
|
|
|
|
|
|
318 |
|
319 |
-
|
320 |
-
|
321 |
-
if 'latitude' not in locations_df.columns or 'longitude' not in locations_df.columns:
|
322 |
-
st.error("Uploaded file is missing required 'latitude' or 'longitude' columns.")
|
323 |
-
else:
|
324 |
-
# Display a preview of the points data
|
325 |
-
st.write("Preview of the uploaded points data:")
|
326 |
-
st.dataframe(locations_df.head())
|
327 |
-
|
328 |
-
# Create a LeafMap object to display the points
|
329 |
-
m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
|
330 |
-
|
331 |
-
# Add points to the map using a loop
|
332 |
-
for _, row in locations_df.iterrows():
|
333 |
-
latitude = row['latitude']
|
334 |
-
longitude = row['longitude']
|
335 |
-
|
336 |
-
# Check if latitude or longitude are NaN and skip if they are
|
337 |
-
if pd.isna(latitude) or pd.isna(longitude):
|
338 |
-
continue # Skip this row and move to the next one
|
339 |
-
|
340 |
-
m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
|
341 |
-
|
342 |
-
# Display map
|
343 |
-
st.write("Map of Uploaded Points:")
|
344 |
-
m.to_streamlit()
|
345 |
-
|
346 |
-
# Store the map in session_state
|
347 |
-
st.session_state.map_data = m
|
348 |
-
|
349 |
-
# Process each point for index calculation
|
350 |
-
for idx, row in locations_df.iterrows():
|
351 |
-
latitude = row['latitude']
|
352 |
-
longitude = row['longitude']
|
353 |
-
location_name = row.get('name', f"Location_{idx}")
|
354 |
-
|
355 |
-
# Skip processing if latitude or longitude is NaN
|
356 |
-
if pd.isna(latitude) or pd.isna(longitude):
|
357 |
-
continue # Skip this row and move to the next one
|
358 |
-
|
359 |
-
# Define the region of interest (ROI)
|
360 |
-
roi = ee.Geometry.Point([longitude, latitude])
|
361 |
-
|
362 |
-
# Load Sentinel-2 image collection
|
363 |
-
collection = ee.ImageCollection(sub_options[sub_selection]) \
|
364 |
-
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
|
365 |
-
.filterBounds(roi)
|
366 |
-
|
367 |
-
image = get_most_recent_image(collection)
|
368 |
-
if not image:
|
369 |
-
st.warning(f"No images found for {location_name}.")
|
370 |
-
else:
|
371 |
-
st.write(f"Found images for {location_name}.")
|
372 |
-
# Perform the calculation based on user selection
|
373 |
-
# Perform the calculation based on user selection
|
374 |
-
result = None
|
375 |
-
if index_choice == 'NDVI':
|
376 |
-
result = calculate_ndvi(image, roi)
|
377 |
-
elif index_choice == 'NDWI':
|
378 |
-
result = calculate_ndwi(image, roi)
|
379 |
-
elif index_choice == 'Average NO₂':
|
380 |
-
if 'NO2' in image.bandNames().getInfo():
|
381 |
-
result = calculate_avg_no2_sentinel5p(image, roi)
|
382 |
-
else:
|
383 |
-
st.warning(f"No NO2 band found for {location_name}. Please use Sentinel-5P for NO₂ data.")
|
384 |
-
elif index_choice.lower() == 'custom formula' and custom_formula:
|
385 |
-
result = process_custom_formula(image, roi, custom_formula)
|
386 |
-
|
387 |
-
# Validate result before using getInfo
|
388 |
-
if result is not None:
|
389 |
-
calculated_value = None # Initialize the calculated_value as None
|
390 |
-
|
391 |
-
# Check if the result is a dictionary
|
392 |
-
if isinstance(result, dict):
|
393 |
-
# Extract the value using the appropriate key (adjust the key name as needed)
|
394 |
-
calculated_value = result.get('CustomResult', None) # Replace 'CustomResult' if using NDVI, NDWI, etc.
|
395 |
-
else:
|
396 |
-
try:
|
397 |
-
# If it's an Earth Engine object, get the value using getInfo
|
398 |
-
calculated_value = result.getInfo()
|
399 |
-
except Exception as e:
|
400 |
-
st.error(f"Error getting result info: {e}")
|
401 |
-
|
402 |
-
# If a valid calculated_value is found, append the result to session_state
|
403 |
-
if calculated_value is not None:
|
404 |
-
st.session_state.results.append({
|
405 |
-
'Location Name': location_name,
|
406 |
-
'Latitude': latitude,
|
407 |
-
'Longitude': longitude,
|
408 |
-
'Calculated Value': calculated_value
|
409 |
-
})
|
410 |
-
else:
|
411 |
-
st.warning(f"No value calculated for {location_name}.")
|
412 |
-
else:
|
413 |
-
st.warning(f"No value calculated for {location_name}.")
|
414 |
-
|
415 |
|
416 |
-
|
417 |
-
if polygons_df is not None:
|
418 |
-
st.write("Preview of the uploaded polygons data:")
|
419 |
-
st.dataframe(polygons_df.head())
|
420 |
|
421 |
-
|
|
|
|
|
|
|
|
|
|
|
422 |
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
|
428 |
|
429 |
-
|
430 |
-
|
431 |
-
|
|
|
432 |
|
433 |
-
|
434 |
-
|
435 |
-
|
|
|
|
|
|
|
436 |
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
continue
|
442 |
|
443 |
-
|
444 |
-
|
445 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
446 |
|
447 |
-
|
|
|
448 |
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
result = None
|
454 |
-
if index_choice.lower() == 'ndvi':
|
455 |
-
result = calculate_ndvi(image, roi)
|
456 |
-
elif index_choice.lower() == 'ndwi':
|
457 |
-
result = calculate_ndwi(image, roi)
|
458 |
-
elif index_choice.lower() == 'average no₂':
|
459 |
-
if 'NO2' in image.bandNames().getInfo():
|
460 |
-
result = calculate_avg_no2_sentinel5p(image, roi)
|
461 |
-
else:
|
462 |
-
st.warning(f"No NO2 band found for {location_name}. Please use Sentinel-5P for NO₂ data.")
|
463 |
-
elif index_choice.lower() == 'custom formula' and custom_formula:
|
464 |
-
result = process_custom_formula(image, roi, custom_formula)
|
465 |
-
|
466 |
-
if result is not None:
|
467 |
-
# Initialize the calculated_value as None
|
468 |
-
calculated_value = None
|
469 |
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
if
|
479 |
-
|
480 |
-
|
481 |
-
'Calculated Value': calculated_value
|
482 |
-
})
|
483 |
-
|
484 |
-
# After processing, show the results
|
485 |
-
if st.session_state.results:
|
486 |
-
result_df = pd.DataFrame(st.session_state.results)
|
487 |
-
|
488 |
-
if shape_type.lower() == 'point':
|
489 |
-
st.write("Processed Results Table (Points):")
|
490 |
-
st.dataframe(result_df[['Location Name', 'Latitude', 'Longitude', 'Calculated Value']])
|
491 |
-
else:
|
492 |
-
st.write("Processed Results Table (Polygons):")
|
493 |
-
st.dataframe(result_df[['Location Name', 'Calculated Value']])
|
494 |
|
495 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
496 |
|
497 |
-
st.download_button(
|
498 |
-
label="Download results as CSV",
|
499 |
-
data=result_df.to_csv(index=False).encode('utf-8'),
|
500 |
-
file_name=filename,
|
501 |
-
mime='text/csv'
|
502 |
-
)
|
|
|
53 |
|
54 |
ee.Initialize(project='ee-yashsacisro24')
|
55 |
|
56 |
+
# Load the Sentinel dataset options from JSON file
|
57 |
with open("sentinel_datasets.json") as f:
|
58 |
data = json.load(f)
|
59 |
|
60 |
+
# Display the title for the Streamlit app
|
61 |
st.title("Sentinel Dataset")
|
62 |
|
63 |
+
# Select dataset category (main selection)
|
64 |
main_selection = st.selectbox("Select Sentinel Dataset Category", list(data.keys()))
|
65 |
|
66 |
+
# If a category is selected, display the sub-options (specific datasets)
|
67 |
if main_selection:
|
68 |
sub_options = data[main_selection]["sub_options"]
|
69 |
sub_selection = st.selectbox("Select Specific Dataset ID", list(sub_options.keys()))
|
70 |
|
71 |
+
# Display the selected dataset ID based on user input
|
72 |
+
if sub_selection:
|
73 |
+
st.write(f"You selected: {main_selection} -> {sub_selection}")
|
74 |
+
st.write(f"Dataset ID: {sub_options[sub_selection]}")
|
75 |
+
|
76 |
+
# Fetch the correct dataset ID from the sub-selection
|
77 |
+
dataset_id = sub_options[sub_selection]
|
78 |
+
|
79 |
# Earth Engine Index Calculator Section
|
80 |
st.header("Earth Engine Index Calculator")
|
81 |
|
|
|
82 |
index_choice = st.selectbox("Select an Index or Enter Custom Formula", ['NDVI', 'NDWI', 'Average NO₂', 'Custom Formula'])
|
83 |
|
84 |
# Initialize custom_formula variable
|
|
|
92 |
elif index_choice.lower() == 'average no₂':
|
93 |
st.write("Formula for Average NO₂: Average NO₂ = Mean(NO2 band)")
|
94 |
elif index_choice.lower() == 'custom formula':
|
95 |
+
custom_formula = st.text_input("Enter Custom Formula (e.g., B5,B4)")
|
96 |
+
# Check if custom formula is empty and show warning
|
97 |
+
if not custom_formula:
|
98 |
+
st.warning("Please enter a custom formula before proceeding.")
|
99 |
+
else:
|
100 |
+
st.write(f"Custom Formula: (band1 - band2) / (band1 + band2)") # Display the custom formula after the user inputs it
|
101 |
+
|
102 |
+
# Function to get the corresponding reducer based on user input
|
103 |
+
def get_reducer(reducer_name):
|
104 |
+
"""
|
105 |
+
Map user-friendly reducer names to Earth Engine reducer objects.
|
106 |
+
"""
|
107 |
+
reducers = {
|
108 |
+
'mean': ee.Reducer.mean(),
|
109 |
+
'sum': ee.Reducer.sum(),
|
110 |
+
'median': ee.Reducer.median(),
|
111 |
+
'min': ee.Reducer.min(),
|
112 |
+
'max': ee.Reducer.max(),
|
113 |
+
'count': ee.Reducer.count(),
|
114 |
+
}
|
115 |
+
|
116 |
+
# Default to 'mean' if the reducer_name is not recognized
|
117 |
+
return reducers.get(reducer_name.lower(), ee.Reducer.mean())
|
118 |
|
119 |
+
# Streamlit selectbox for reducer choice
|
120 |
reducer_choice = st.selectbox(
|
121 |
"Select Reducer",
|
122 |
['mean', 'sum', 'median', 'min', 'max', 'count'],
|
|
|
152 |
# Ask user to upload a file based on shape type (case-insensitive)
|
153 |
file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
|
154 |
|
155 |
+
if file_upload is not None:
|
156 |
+
# Read the user-uploaded file
|
157 |
+
if shape_type.lower() == "point":
|
158 |
+
# Handle different file types for Point data
|
159 |
+
if file_upload.name.endswith('.csv'):
|
160 |
+
locations_df = pd.read_csv(file_upload)
|
161 |
+
elif file_upload.name.endswith('.geojson'):
|
162 |
+
locations_df = gpd.read_file(file_upload)
|
163 |
+
elif file_upload.name.endswith('.kml'):
|
164 |
+
locations_df = gpd.read_file(file_upload)
|
165 |
+
else:
|
166 |
+
st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
|
167 |
+
locations_df = pd.DataFrame()
|
168 |
+
|
169 |
+
# Processing the point data
|
170 |
+
with st.spinner('Processing data...'):
|
171 |
+
if locations_df is not None and not locations_df.empty:
|
172 |
+
# Ensure the necessary columns exist in the dataframe
|
173 |
+
if 'latitude' not in locations_df.columns or 'longitude' not in locations_df.columns:
|
174 |
+
st.error("Uploaded file is missing required 'latitude' or 'longitude' columns.")
|
175 |
+
else:
|
176 |
+
# Display a preview of the points data
|
177 |
+
st.write("Preview of the uploaded points data:")
|
178 |
+
st.dataframe(locations_df.head())
|
179 |
+
|
180 |
+
# Create a LeafMap object to display the points
|
181 |
+
m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
|
182 |
+
|
183 |
+
# Add points to the map using a loop
|
184 |
+
for _, row in locations_df.iterrows():
|
185 |
+
latitude = row['latitude']
|
186 |
+
longitude = row['longitude']
|
187 |
+
|
188 |
+
# Check if latitude or longitude are NaN and skip if they are
|
189 |
+
if pd.isna(latitude) or pd.isna(longitude):
|
190 |
+
continue # Skip this row and move to the next one
|
191 |
+
|
192 |
+
m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
|
193 |
+
|
194 |
+
# Display map
|
195 |
+
st.write("Map of Uploaded Points:")
|
196 |
+
m.to_streamlit()
|
197 |
+
|
198 |
+
# Store the map in session_state
|
199 |
+
st.session_state.map_data = m
|
200 |
+
|
201 |
+
elif shape_type.lower() == "polygon":
|
202 |
+
# Handle different file types for Polygon data
|
203 |
+
if file_upload.name.endswith('.csv'):
|
204 |
+
locations_df = pd.read_csv(file_upload)
|
205 |
+
elif file_upload.name.endswith('.geojson'):
|
206 |
+
locations_df = gpd.read_file(file_upload)
|
207 |
+
elif file_upload.name.endswith('.kml'):
|
208 |
+
locations_df = gpd.read_file(file_upload)
|
209 |
+
else:
|
210 |
+
st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
|
211 |
+
locations_df = pd.DataFrame()
|
212 |
+
|
213 |
+
# Processing the polygon data
|
214 |
+
with st.spinner('Processing data...'):
|
215 |
+
if locations_df is not None and not locations_df.empty:
|
216 |
+
# Ensure the 'geometry' column exists in the dataframe
|
217 |
+
if 'geometry' not in locations_df.columns:
|
218 |
+
st.error("Uploaded file is missing required 'geometry' column.")
|
219 |
+
else:
|
220 |
+
# Display a preview of the polygons data
|
221 |
+
st.write("Preview of the uploaded polygons data:")
|
222 |
+
st.dataframe(locations_df.head())
|
223 |
+
|
224 |
+
# Create a LeafMap object to display the polygons
|
225 |
+
m = leafmap.Map(center=[locations_df.geometry.centroid.y.mean(), locations_df.geometry.centroid.x.mean()], zoom=10)
|
226 |
+
|
227 |
+
# Add polygons to the map using a loop
|
228 |
+
for _, row in locations_df.iterrows():
|
229 |
+
polygon = row['geometry']
|
230 |
+
if polygon.is_valid:
|
231 |
+
gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=locations_df.crs)
|
232 |
+
m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
|
233 |
+
|
234 |
+
# Display map
|
235 |
+
st.write("Map of Uploaded Polygons:")
|
236 |
+
m.to_streamlit()
|
237 |
+
|
238 |
+
# Store the map in session_state
|
239 |
+
st.session_state.map_data = m
|
240 |
+
|
241 |
+
|
242 |
# Date Input for Start and End Dates
|
243 |
start_date = st.date_input("Start Date", value=pd.to_datetime('2020-01-01'))
|
244 |
end_date = st.date_input("End Date", value=pd.to_datetime('2020-12-31'))
|
|
|
247 |
start_date_str = start_date.strftime('%Y-%m-%d')
|
248 |
end_date_str = end_date.strftime('%Y-%m-%d')
|
249 |
|
250 |
+
# Aggregation period selection
|
251 |
+
aggregation_period = st.selectbox("Select Aggregation Period", ["Daily", "Weekly", "Monthly", "Yearly"], index=0)
|
252 |
+
|
253 |
# Initialize session state for storing results if not already done
|
254 |
if 'results' not in st.session_state:
|
255 |
st.session_state.results = []
|
|
|
262 |
def parameters_changed():
|
263 |
return (
|
264 |
st.session_state.last_params.get('main_selection') != main_selection or
|
265 |
+
st.session_state.last_params.get('dataset_id') != dataset_id or
|
266 |
st.session_state.last_params.get('index_choice') != index_choice or
|
267 |
st.session_state.last_params.get('start_date_str') != start_date_str or
|
268 |
st.session_state.last_params.get('end_date_str') != end_date_str or
|
|
|
275 |
st.session_state.results = [] # Clear the previous results
|
276 |
st.session_state.last_params = {
|
277 |
'main_selection': main_selection,
|
278 |
+
'dataset_id': dataset_id,
|
279 |
'index_choice': index_choice,
|
280 |
'start_date_str': start_date_str,
|
281 |
'end_date_str': end_date_str,
|
|
|
283 |
'file_upload': file_upload
|
284 |
}
|
285 |
|
286 |
+
# Function to calculate NDVI with the selected reducer
|
287 |
+
def calculate_ndvi(image, geometry, reducer_choice):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
|
289 |
+
return ndvi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
|
291 |
# Function to calculate NDWI
|
292 |
+
def calculate_ndwi(image, geometry, reducer_choice):
|
293 |
ndwi = image.normalizedDifference(['B3', 'B8']).rename('NDWI')
|
294 |
+
return ndwi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
|
296 |
+
def calculate_custom_formula(image, geometry, custom_formula, reducer_choice, scale=30):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
|
298 |
+
# Calculate NDWI using the user-specified bands
|
299 |
+
band1 = custom_formula[:custom_formula.find(",")]
|
300 |
+
band2 = custom_formula[custom_formula.find(",")+1:]
|
301 |
+
custom_formula = image.normalizedDifference([band1, band2]).rename('custom formula')
|
302 |
+
return custom_formula
|
|
|
|
|
|
|
|
|
303 |
|
304 |
+
# Modify aggregation functions to return the correct time period and aggregated results
|
305 |
+
def aggregate_data_daily(collection):
|
306 |
+
# Extract day from the image date (using the exact date)
|
307 |
+
collection = collection.map(lambda image: image.set('day', ee.Date(image.get('system:time_start')).format('YYYY-MM-dd')))
|
|
|
|
|
|
|
308 |
|
309 |
+
# Group images by day (distinct days)
|
310 |
+
grouped_by_day = collection.aggregate_array('day').distinct()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
|
312 |
+
def calculate_daily_mean(day):
|
313 |
+
# Filter the collection by the specific day
|
314 |
+
daily_collection = collection.filter(ee.Filter.eq('day', day))
|
315 |
+
daily_mean = daily_collection.mean() # Calculate mean for the day
|
316 |
+
return daily_mean.set('day', day)
|
317 |
|
318 |
+
# Calculate the daily mean for each day
|
319 |
+
daily_images = ee.List(grouped_by_day.map(calculate_daily_mean))
|
320 |
+
|
321 |
+
return ee.ImageCollection(daily_images)
|
|
|
|
|
|
|
322 |
|
323 |
+
def aggregate_data_weekly(collection):
|
324 |
+
# Extract week and year from the image date
|
325 |
+
collection = collection.map(lambda image: image.set('week', ee.Date(image.get('system:time_start')).format('YYYY-ww')))
|
326 |
+
|
327 |
+
# Group images by week
|
328 |
+
grouped_by_week = collection.aggregate_array('week').distinct()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
|
330 |
+
def calculate_weekly_mean(week):
|
331 |
+
weekly_collection = collection.filter(ee.Filter.eq('week', week))
|
332 |
+
weekly_mean = weekly_collection.mean()
|
333 |
+
return weekly_mean.set('week', week)
|
334 |
|
335 |
+
# Calculate the weekly mean for each week
|
336 |
+
weekly_images = ee.List(grouped_by_week.map(calculate_weekly_mean))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
|
338 |
+
return ee.ImageCollection(weekly_images)
|
|
|
|
|
|
|
339 |
|
340 |
+
def aggregate_data_monthly(collection):
|
341 |
+
# Extract month and year from the image date
|
342 |
+
collection = collection.map(lambda image: image.set('month', ee.Date(image.get('system:time_start')).format('YYYY-MM')))
|
343 |
+
|
344 |
+
# Group images by month
|
345 |
+
grouped_by_month = collection.aggregate_array('month').distinct()
|
346 |
|
347 |
+
def calculate_monthly_mean(month):
|
348 |
+
monthly_collection = collection.filter(ee.Filter.eq('month', month))
|
349 |
+
monthly_mean = monthly_collection.mean()
|
350 |
+
return monthly_mean.set('month', month)
|
|
|
351 |
|
352 |
+
# Calculate the monthly mean for each month
|
353 |
+
monthly_images = ee.List(grouped_by_month.map(calculate_monthly_mean))
|
354 |
+
|
355 |
+
return ee.ImageCollection(monthly_images)
|
356 |
|
357 |
+
def aggregate_data_yearly(collection):
|
358 |
+
# Extract year from the image date
|
359 |
+
collection = collection.map(lambda image: image.set('year', ee.Date(image.get('system:time_start')).format('YYYY')))
|
360 |
+
|
361 |
+
# Group images by year
|
362 |
+
grouped_by_year = collection.aggregate_array('year').distinct()
|
363 |
|
364 |
+
def calculate_yearly_mean(year):
|
365 |
+
yearly_collection = collection.filter(ee.Filter.eq('year', year))
|
366 |
+
yearly_mean = yearly_collection.mean()
|
367 |
+
return yearly_mean.set('year', year)
|
|
|
368 |
|
369 |
+
# Calculate the yearly mean for each year
|
370 |
+
yearly_images = ee.List(grouped_by_year.map(calculate_yearly_mean))
|
371 |
+
|
372 |
+
return ee.ImageCollection(yearly_images)
|
373 |
+
|
374 |
+
# Function to calculate index based on the selected choice
|
375 |
+
def calculate_index_for_period(image, roi, index_choice, reducer_choice, custom_formula):
|
376 |
+
if index_choice.lower() == 'ndvi':
|
377 |
+
return calculate_ndvi(image, roi, reducer_choice)
|
378 |
+
elif index_choice.lower() == 'ndwi':
|
379 |
+
return calculate_ndwi(image, roi, reducer_choice)
|
380 |
+
elif index_choice.lower() == 'average no₂':
|
381 |
+
mean_no2 = image.select('NO2').mean().rename('Average NO₂')
|
382 |
+
return mean_no2
|
383 |
+
elif index_choice.lower() == 'custom formula':
|
384 |
+
# Pass the custom formula here, not the index_choice
|
385 |
+
return calculate_custom_formula(image, roi, custom_formula, reducer_choice)
|
386 |
+
else:
|
387 |
+
st.write("Please Select any one option...."+ index_choice.lower())
|
388 |
|
389 |
+
def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id, index_choice, reducer_choice, shape_type, aggregation_period, custom_formula=""):
|
390 |
+
aggregated_results = []
|
391 |
|
392 |
+
# Check if the index_choice is 'custom formula' and the custom formula is empty
|
393 |
+
if index_choice.lower() == 'custom_formula' and not custom_formula:
|
394 |
+
st.error("Custom formula cannot be empty. Please provide a formula.")
|
395 |
+
return aggregated_results # Return early to avoid further processing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
|
397 |
+
# Initialize progress bar
|
398 |
+
total_steps = len(locations_df)
|
399 |
+
progress_bar = st.progress(0)
|
400 |
+
progress_text = st.empty()
|
401 |
+
|
402 |
+
with st.spinner('Processing data...'):
|
403 |
+
if shape_type.lower() == "point":
|
404 |
+
for idx, row in locations_df.iterrows():
|
405 |
+
# Check if the latitude and longitude columns exist and have values
|
406 |
+
latitude = row.get('latitude')
|
407 |
+
longitude = row.get('longitude')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
408 |
|
409 |
+
if pd.isna(latitude) or pd.isna(longitude):
|
410 |
+
st.warning(f"Skipping location {idx} with missing latitude or longitude")
|
411 |
+
continue
|
412 |
+
|
413 |
+
location_name = row.get('name', f"Location_{idx}")
|
414 |
+
|
415 |
+
roi = ee.Geometry.Point([longitude, latitude])
|
416 |
+
|
417 |
+
collection = ee.ImageCollection(dataset_id) \
|
418 |
+
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
|
419 |
+
.filterBounds(roi)
|
420 |
+
|
421 |
+
# Aggregate data based on the selected period
|
422 |
+
if aggregation_period.lower() == 'daily':
|
423 |
+
collection = aggregate_data_daily(collection)
|
424 |
+
elif aggregation_period.lower() == 'weekly':
|
425 |
+
collection = aggregate_data_weekly(collection)
|
426 |
+
elif aggregation_period.lower() == 'monthly':
|
427 |
+
collection = aggregate_data_monthly(collection)
|
428 |
+
elif aggregation_period.lower() == 'yearly':
|
429 |
+
collection = aggregate_data_yearly(collection)
|
430 |
+
|
431 |
+
# Process each image in the collection
|
432 |
+
image_list = collection.toList(collection.size())
|
433 |
+
|
434 |
+
for i in range(image_list.size().getInfo()):
|
435 |
+
image = ee.Image(image_list.get(i))
|
436 |
+
|
437 |
+
if aggregation_period.lower() == 'daily':
|
438 |
+
timestamp = image.get('day')
|
439 |
+
elif aggregation_period.lower() == 'weekly':
|
440 |
+
timestamp = image.get('week')
|
441 |
+
elif aggregation_period.lower() == 'monthly':
|
442 |
+
timestamp = image.get('month')
|
443 |
+
elif aggregation_period.lower() == 'yearly':
|
444 |
+
timestamp = image.get('year')
|
445 |
+
|
446 |
+
date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo()
|
447 |
+
|
448 |
+
# Calculate the index for each period
|
449 |
+
index_image = calculate_index_for_period(image, roi, index_choice, reducer_choice, custom_formula)
|
450 |
+
|
451 |
+
# Skip if index_image is None
|
452 |
+
if index_image is None:
|
453 |
+
st.warning(f"Index calculation failed for {location_name} on {date}. Skipping this entry.")
|
454 |
+
continue
|
455 |
+
|
456 |
+
# Reduce the region to get the aggregated value
|
457 |
+
try:
|
458 |
+
index_value = index_image.reduceRegion(
|
459 |
+
reducer=get_reducer(reducer_choice),
|
460 |
+
geometry=roi,
|
461 |
+
scale=30
|
462 |
+
).get(index_image.bandNames().get(0))
|
463 |
+
|
464 |
+
calculated_value = index_value.getInfo()
|
465 |
+
|
466 |
+
# Append the results if valid
|
467 |
+
if isinstance(calculated_value, (int, float)):
|
468 |
+
aggregated_results.append({
|
469 |
+
'Location Name': location_name,
|
470 |
+
'Latitude': latitude,
|
471 |
+
'Longitude': longitude,
|
472 |
+
'Date': date,
|
473 |
+
'Calculated Value': calculated_value
|
474 |
+
})
|
475 |
+
else:
|
476 |
+
st.warning(f"Skipping invalid value for {location_name} on {date}")
|
477 |
+
except Exception as e:
|
478 |
+
st.error(f"Error retrieving value for {location_name}: {e}")
|
479 |
+
|
480 |
+
# Update progress bar
|
481 |
+
progress_percentage = (idx + 1) / total_steps
|
482 |
+
progress_bar.progress(progress_percentage)
|
483 |
+
progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
|
484 |
+
|
485 |
+
elif shape_type.lower() == "polygon":
|
486 |
+
for idx, row in locations_df.iterrows():
|
487 |
+
polygon_name = row.get('name', f"Polygon_{idx}")
|
488 |
+
polygon_geometry = row.get('geometry')
|
489 |
+
|
490 |
+
location_name = polygon_name
|
491 |
+
|
492 |
+
try:
|
493 |
+
roi = convert_to_ee_geometry(polygon_geometry)
|
494 |
+
except ValueError as e:
|
495 |
+
st.warning(f"Skipping invalid polygon {polygon_name}: {e}")
|
496 |
+
continue
|
497 |
+
|
498 |
+
collection = ee.ImageCollection(dataset_id) \
|
499 |
+
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
|
500 |
+
.filterBounds(roi)
|
501 |
+
|
502 |
+
# Aggregate data based on the selected period
|
503 |
+
if aggregation_period.lower() == 'daily':
|
504 |
+
collection = aggregate_data_daily(collection)
|
505 |
+
elif aggregation_period.lower() == 'weekly':
|
506 |
+
collection = aggregate_data_weekly(collection)
|
507 |
+
elif aggregation_period.lower() == 'monthly':
|
508 |
+
collection = aggregate_data_monthly(collection)
|
509 |
+
elif aggregation_period.lower() == 'yearly':
|
510 |
+
collection = aggregate_data_yearly(collection)
|
511 |
+
|
512 |
+
# Process each image in the collection
|
513 |
+
image_list = collection.toList(collection.size())
|
514 |
+
|
515 |
+
for i in range(image_list.size().getInfo()):
|
516 |
+
image = ee.Image(image_list.get(i))
|
517 |
+
|
518 |
+
if aggregation_period.lower() == 'daily':
|
519 |
+
timestamp = image.get('day')
|
520 |
+
elif aggregation_period.lower() == 'weekly':
|
521 |
+
timestamp = image.get('week')
|
522 |
+
elif aggregation_period.lower() == 'monthly':
|
523 |
+
timestamp = image.get('month')
|
524 |
+
elif aggregation_period.lower() == 'yearly':
|
525 |
+
timestamp = image.get('year')
|
526 |
+
|
527 |
+
date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo()
|
528 |
+
|
529 |
+
# Calculate the index for each period
|
530 |
+
index_image = calculate_index_for_period(image, roi, index_choice, reducer_choice, custom_formula)
|
531 |
+
|
532 |
+
# Skip if index_image is None
|
533 |
+
if index_image is None:
|
534 |
+
st.warning(f"Index calculation failed for {location_name} on {date}. Skipping this entry.")
|
535 |
+
continue
|
536 |
+
|
537 |
+
# Reduce the region to get the aggregated value
|
538 |
+
try:
|
539 |
+
index_value = index_image.reduceRegion(
|
540 |
+
reducer=get_reducer(reducer_choice),
|
541 |
+
geometry=roi,
|
542 |
+
scale=30
|
543 |
+
).get(index_image.bandNames().get(0))
|
544 |
+
|
545 |
+
calculated_value = index_value.getInfo()
|
546 |
+
|
547 |
+
# Append the results if valid
|
548 |
+
if isinstance(calculated_value, (int, float)):
|
549 |
+
aggregated_results.append({
|
550 |
+
'Location Name': location_name,
|
551 |
+
'Date': date,
|
552 |
+
'Calculated Value': calculated_value
|
553 |
+
})
|
554 |
+
else:
|
555 |
+
st.warning(f"Skipping invalid value for {location_name} on {date}")
|
556 |
+
except Exception as e:
|
557 |
+
st.error(f"Error retrieving value for {location_name}: {e}")
|
558 |
+
|
559 |
+
# Update progress bar
|
560 |
+
progress_percentage = (idx + 1) / total_steps
|
561 |
+
progress_bar.progress(progress_percentage)
|
562 |
+
progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
|
563 |
+
|
564 |
+
return aggregated_results
|
565 |
+
|
566 |
+
# When the user clicks the process button, start the calculation
|
567 |
+
if st.button(f"Calculate ({index_choice})"):
|
568 |
+
if file_upload is not None:
|
569 |
+
# Read the user-uploaded file
|
570 |
+
if shape_type.lower() == "point":
|
571 |
+
if file_upload.name.endswith('.csv'):
|
572 |
+
locations_df = read_csv(file_upload)
|
573 |
+
elif file_upload.name.endswith('.geojson'):
|
574 |
+
locations_df = read_geojson(file_upload)
|
575 |
+
elif file_upload.name.endswith('.kml'):
|
576 |
+
locations_df = read_kml(file_upload)
|
577 |
+
else:
|
578 |
+
st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
|
579 |
+
locations_df = pd.DataFrame()
|
580 |
+
|
581 |
+
# Process results for the selected aggregation period
|
582 |
+
results = process_aggregation(
|
583 |
+
locations_df,
|
584 |
+
start_date_str,
|
585 |
+
end_date_str,
|
586 |
+
dataset_id,
|
587 |
+
index_choice,
|
588 |
+
reducer_choice,
|
589 |
+
shape_type,
|
590 |
+
aggregation_period,
|
591 |
+
custom_formula
|
592 |
+
)
|
593 |
+
|
594 |
+
# Display the results in a DataFrame
|
595 |
+
if results:
|
596 |
+
result_df = pd.DataFrame(results)
|
597 |
+
st.write(f"Processed Results Table ({aggregation_period}):")
|
598 |
+
st.dataframe(result_df)
|
599 |
+
|
600 |
+
# Provide a download button for the result CSV file
|
601 |
+
filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y/%m/%d')}_{end_date.strftime('%Y/%m/%d')}_{aggregation_period.lower()}.csv"
|
602 |
+
st.download_button(
|
603 |
+
label="Download results as CSV",
|
604 |
+
data=result_df.to_csv(index=False).encode('utf-8'),
|
605 |
+
file_name=filename,
|
606 |
+
mime='text/csv'
|
607 |
+
)
|
608 |
+
|
609 |
+
# Once processing is complete, hide the spinner
|
610 |
+
st.spinner('') # This will stop the spinner
|
611 |
+
st.success('Processing complete!')
|
612 |
+
else:
|
613 |
+
st.warning("No results were generated.")
|
614 |
+
|
615 |
+
elif shape_type.lower() == "polygon":
|
616 |
+
if file_upload.name.endswith('.geojson'):
|
617 |
+
locations_df = read_geojson(file_upload)
|
618 |
+
else:
|
619 |
+
st.error("Please upload a valid GeoJSON file for polygons.")
|
620 |
+
|
621 |
+
# Process results for the selected aggregation period
|
622 |
+
results = process_aggregation(
|
623 |
+
locations_df,
|
624 |
+
start_date_str,
|
625 |
+
end_date_str,
|
626 |
+
dataset_id,
|
627 |
+
index_choice,
|
628 |
+
reducer_choice,
|
629 |
+
shape_type,
|
630 |
+
aggregation_period,
|
631 |
+
custom_formula
|
632 |
+
)
|
633 |
+
|
634 |
+
# Display the results in a DataFrame
|
635 |
+
if results:
|
636 |
+
result_df = pd.DataFrame(results)
|
637 |
+
st.write(f"Processed Results Table ({aggregation_period}):")
|
638 |
+
st.dataframe(result_df)
|
639 |
+
|
640 |
+
# Provide a download button for the result CSV file
|
641 |
+
filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y/%m/%d')}_{end_date.strftime('%Y/%m/%d')}_{aggregation_period.lower()}.csv"
|
642 |
+
st.download_button(
|
643 |
+
label="Download results as CSV",
|
644 |
+
data=result_df.to_csv(index=False).encode('utf-8'),
|
645 |
+
file_name=filename,
|
646 |
+
mime='text/csv'
|
647 |
+
)
|
648 |
+
# Once processing is complete, hide the spinner
|
649 |
+
st.spinner('') # This will stop the spinner
|
650 |
+
st.success('Processing complete!')
|
651 |
+
else:
|
652 |
+
st.warning("No results were generated.")
|
653 |
+
|
654 |
+
else:
|
655 |
+
st.warning("Please upload a file.")
|
656 |
|
|
|
|
|
|
|
|
|
|
|
|