diff --git "a/app.py" "b/app.py" --- "a/app.py" +++ "b/app.py" @@ -1,1332 +1,1332 @@ -# import streamlit as st -# import json -# import ee -# import os -# import pandas as pd -# import geopandas as gpd -# from datetime import datetime -# import leafmap.foliumap as leafmap -# import re -# from shapely.geometry import base -# from lxml import etree -# from xml.etree import ElementTree as ET +import streamlit as st +import json +import ee +import os +import pandas as pd +import geopandas as gpd +from datetime import datetime +import leafmap.foliumap as leafmap +import re +from shapely.geometry import base +from lxml import etree +from xml.etree import ElementTree as ET -# # Set up the page layout -# st.set_page_config(layout="wide") +# Set up the page layout +st.set_page_config(layout="wide") -# # Custom button styling -# m = st.markdown( -# """ -# """, -# unsafe_allow_html=True, -# ) +# Custom button styling +m = st.markdown( + """ + """, + unsafe_allow_html=True, +) -# # Logo -# st.write( -# f""" -#
-# -# -#
-# """, -# unsafe_allow_html=True, -# ) +# Logo +st.write( + f""" +
+ + +
+ """, + unsafe_allow_html=True, +) -# # Title -# st.markdown( -# f""" -#

Precision Analysis for Vegetation, Water, and Air Quality

-# """, -# unsafe_allow_html=True, -# ) -# st.write("

User Inputs

", unsafe_allow_html=True) +# Title +st.markdown( + f""" +

Precision Analysis for Vegetation, Water, and Air Quality

+ """, + unsafe_allow_html=True, +) +st.write("

User Inputs

", unsafe_allow_html=True) -# # Authenticate and initialize Earth Engine -# earthengine_credentials = os.environ.get("EE_Authentication") +# Authenticate and initialize Earth Engine +earthengine_credentials = os.environ.get("EE_Authentication") -# # Initialize Earth Engine with secret credentials -# os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True) -# with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f: -# f.write(earthengine_credentials) +# Initialize Earth Engine with secret credentials +os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True) +with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f: + f.write(earthengine_credentials) -# ee.Initialize(project='ee-yashsacisro24') +ee.Initialize(project='ee-yashsacisro24') -# # Load the Sentinel dataset options from JSON file -# with open("sentinel_datasets.json") as f: -# data = json.load(f) +# Load the Sentinel dataset options from JSON file +with open("sentinel_datasets.json") as f: + data = json.load(f) -# # Display the title for the Streamlit app -# st.title("Sentinel Dataset") +# Display the title for the Streamlit app +st.title("Sentinel Dataset") -# # Select dataset category (main selection) -# main_selection = st.selectbox("Select Sentinel Dataset Category", list(data.keys())) +# Select dataset category (main selection) +main_selection = st.selectbox("Select Sentinel Dataset Category", list(data.keys())) -# # If a category is selected, display the sub-options (specific datasets) -# if main_selection: -# sub_options = data[main_selection]["sub_options"] -# sub_selection = st.selectbox("Select Specific Dataset ID", list(sub_options.keys())) +# If a category is selected, display the sub-options (specific datasets) +if main_selection: + sub_options = data[main_selection]["sub_options"] + sub_selection = st.selectbox("Select Specific Dataset ID", list(sub_options.keys())) -# # Display the selected dataset ID based on user input -# if sub_selection: -# st.write(f"You selected: {main_selection} -> {sub_options[sub_selection]}") -# st.write(f"Dataset ID: {sub_selection}") -# dataset_id = sub_selection # Use the key directly as the dataset ID + # Display the selected dataset ID based on user input + if sub_selection: + st.write(f"You selected: {main_selection} -> {sub_options[sub_selection]}") + st.write(f"Dataset ID: {sub_selection}") + dataset_id = sub_selection # Use the key directly as the dataset ID -# # Earth Engine Index Calculator Section -# st.header("Earth Engine Index Calculator") +# Earth Engine Index Calculator Section +st.header("Earth Engine Index Calculator") -# # Load band information based on selected dataset -# if main_selection and sub_selection: -# dataset_bands = data[main_selection]["bands"].get(sub_selection, []) -# st.write(f"Available Bands for {sub_options[sub_selection]}: {', '.join(dataset_bands)}") +# Load band information based on selected dataset +if main_selection and sub_selection: + dataset_bands = data[main_selection]["bands"].get(sub_selection, []) + st.write(f"Available Bands for {sub_options[sub_selection]}: {', '.join(dataset_bands)}") -# # Allow user to select 1 or 2 bands -# selected_bands = st.multiselect( -# "Select 1 or 2 Bands for Calculation", -# options=dataset_bands, -# default=[dataset_bands[0]] if dataset_bands else [], -# help="Select at least 1 band and up to 2 bands." -# ) + # Allow user to select 1 or 2 bands + selected_bands = st.multiselect( + "Select 1 or 2 Bands for Calculation", + options=dataset_bands, + default=[dataset_bands[0]] if dataset_bands else [], + help="Select at least 1 band and up to 2 bands." + ) -# # Ensure minimum 1 and maximum 2 bands are selected -# if len(selected_bands) < 1: -# st.warning("Please select at least one band.") -# st.stop() -# elif len(selected_bands) > 2: -# st.warning("You can select a maximum of 2 bands.") -# st.stop() + # Ensure minimum 1 and maximum 2 bands are selected + if len(selected_bands) < 1: + st.warning("Please select at least one band.") + st.stop() + elif len(selected_bands) > 2: + st.warning("You can select a maximum of 2 bands.") + st.stop() -# # Show custom formula input if bands are selected -# if selected_bands: -# default_formula = ( -# f"{selected_bands[0]}" if len(selected_bands) == 1 -# else f"({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})" -# ) -# custom_formula = st.text_input( -# "Enter Custom Formula (e.g., 'B3*B5/2' or '(B8 - B4) / (B8 + B4)')", -# value=default_formula, -# help=f"Use {', '.join(selected_bands)} in your formula. Example: 'B3*B5/2'" -# ) + # Show custom formula input if bands are selected + if selected_bands: + default_formula = ( + f"{selected_bands[0]}" if len(selected_bands) == 1 + else f"({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})" + ) + custom_formula = st.text_input( + "Enter Custom Formula (e.g., 'B3*B5/2' or '(B8 - B4) / (B8 + B4)')", + value=default_formula, + help=f"Use {', '.join(selected_bands)} in your formula. Example: 'B3*B5/2'" + ) -# if not custom_formula: -# st.warning("Please enter a custom formula to proceed.") -# st.stop() + if not custom_formula: + st.warning("Please enter a custom formula to proceed.") + st.stop() -# # Display the formula -# st.write(f"Custom Formula: {custom_formula}") + # Display the formula + st.write(f"Custom Formula: {custom_formula}") -# # Function to get the corresponding reducer based on user input -# def get_reducer(reducer_name): -# """ -# Map user-friendly reducer names to Earth Engine reducer objects. -# """ -# reducers = { -# 'mean': ee.Reducer.mean(), -# 'sum': ee.Reducer.sum(), -# 'median': ee.Reducer.median(), -# 'min': ee.Reducer.min(), -# 'max': ee.Reducer.max(), -# 'count': ee.Reducer.count(), -# } -# return reducers.get(reducer_name.lower(), ee.Reducer.mean()) +# Function to get the corresponding reducer based on user input +def get_reducer(reducer_name): + """ + Map user-friendly reducer names to Earth Engine reducer objects. + """ + reducers = { + 'mean': ee.Reducer.mean(), + 'sum': ee.Reducer.sum(), + 'median': ee.Reducer.median(), + 'min': ee.Reducer.min(), + 'max': ee.Reducer.max(), + 'count': ee.Reducer.count(), + } + return reducers.get(reducer_name.lower(), ee.Reducer.mean()) -# # Streamlit selectbox for reducer choice -# reducer_choice = st.selectbox( -# "Select Reducer", -# ['mean', 'sum', 'median', 'min', 'max', 'count'], -# index=0 # Default to 'mean' -# ) +# Streamlit selectbox for reducer choice +reducer_choice = st.selectbox( + "Select Reducer", + ['mean', 'sum', 'median', 'min', 'max', 'count'], + index=0 # Default to 'mean' +) -# # Function to convert geometry to Earth Engine format -# def convert_to_ee_geometry(geometry): -# if isinstance(geometry, base.BaseGeometry): -# if geometry.is_valid: -# geojson = geometry.__geo_interface__ -# return ee.Geometry(geojson) -# else: -# raise ValueError("Invalid geometry: The polygon geometry is not valid.") -# elif isinstance(geometry, dict) or isinstance(geometry, str): -# try: -# if isinstance(geometry, str): -# geometry = json.loads(geometry) -# if 'type' in geometry and 'coordinates' in geometry: -# return ee.Geometry(geometry) -# else: -# raise ValueError("GeoJSON format is invalid.") -# except Exception as e: -# raise ValueError(f"Error parsing GeoJSON: {e}") -# elif isinstance(geometry, str) and geometry.lower().endswith(".kml"): -# try: -# tree = ET.parse(geometry) -# kml_root = tree.getroot() -# kml_namespace = {'kml': 'http://www.opengis.net/kml/2.2'} -# coordinates = kml_root.findall(".//kml:coordinates", kml_namespace) -# if coordinates: -# coords_text = coordinates[0].text.strip() -# coords = coords_text.split() -# coords = [tuple(map(float, coord.split(','))) for coord in coords] -# geojson = {"type": "Polygon", "coordinates": [coords]} -# return ee.Geometry(geojson) -# else: -# raise ValueError("KML does not contain valid coordinates.") -# except Exception as e: -# raise ValueError(f"Error parsing KML: {e}") -# else: -# raise ValueError("Unsupported geometry input type. Supported types are Shapely, GeoJSON, and KML.") +# Function to convert geometry to Earth Engine format +def convert_to_ee_geometry(geometry): + if isinstance(geometry, base.BaseGeometry): + if geometry.is_valid: + geojson = geometry.__geo_interface__ + return ee.Geometry(geojson) + else: + raise ValueError("Invalid geometry: The polygon geometry is not valid.") + elif isinstance(geometry, dict) or isinstance(geometry, str): + try: + if isinstance(geometry, str): + geometry = json.loads(geometry) + if 'type' in geometry and 'coordinates' in geometry: + return ee.Geometry(geometry) + else: + raise ValueError("GeoJSON format is invalid.") + except Exception as e: + raise ValueError(f"Error parsing GeoJSON: {e}") + elif isinstance(geometry, str) and geometry.lower().endswith(".kml"): + try: + tree = ET.parse(geometry) + kml_root = tree.getroot() + kml_namespace = {'kml': 'http://www.opengis.net/kml/2.2'} + coordinates = kml_root.findall(".//kml:coordinates", kml_namespace) + if coordinates: + coords_text = coordinates[0].text.strip() + coords = coords_text.split() + coords = [tuple(map(float, coord.split(','))) for coord in coords] + geojson = {"type": "Polygon", "coordinates": [coords]} + return ee.Geometry(geojson) + else: + raise ValueError("KML does not contain valid coordinates.") + except Exception as e: + raise ValueError(f"Error parsing KML: {e}") + else: + raise ValueError("Unsupported geometry input type. Supported types are Shapely, GeoJSON, and KML.") -# # Date Input for Start and End Dates -# start_date = st.date_input("Start Date", value=pd.to_datetime('2024-11-01')) -# end_date = st.date_input("End Date", value=pd.to_datetime('2024-12-01')) +# Date Input for Start and End Dates +start_date = st.date_input("Start Date", value=pd.to_datetime('2024-11-01')) +end_date = st.date_input("End Date", value=pd.to_datetime('2024-12-01')) -# # Convert start_date and end_date to string format for Earth Engine -# start_date_str = start_date.strftime('%Y-%m-%d') -# end_date_str = end_date.strftime('%Y-%m-%d') +# Convert start_date and end_date to string format for Earth Engine +start_date_str = start_date.strftime('%Y-%m-%d') +end_date_str = end_date.strftime('%Y-%m-%d') -# # Aggregation period selection -# aggregation_period = st.selectbox("Select Aggregation Period", ["Daily", "Weekly", "Monthly", "Yearly"], index=0) +# Aggregation period selection +aggregation_period = st.selectbox("Select Aggregation Period", ["Daily", "Weekly", "Monthly", "Yearly"], index=0) -# # Ask user whether they want to process 'Point' or 'Polygon' data -# shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"]) +# Ask user whether they want to process 'Point' or 'Polygon' data +shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"]) -# # Additional options based on shape type -# kernel_size = None -# include_boundary = None -# if shape_type.lower() == "point": -# kernel_size = st.selectbox( -# "Select Calculation Area", -# ["Point", "3x3 Kernel", "5x5 Kernel"], -# index=0, -# help="Choose 'Point' for exact point calculation, or a kernel size for area averaging." -# ) -# elif shape_type.lower() == "polygon": -# include_boundary = st.checkbox( -# "Include Boundary Pixels", -# value=True, -# help="Check to include pixels on the polygon boundary; uncheck to exclude them." -# ) +# Additional options based on shape type +kernel_size = None +include_boundary = None +if shape_type.lower() == "point": + kernel_size = st.selectbox( + "Select Calculation Area", + ["Point", "3x3 Kernel", "5x5 Kernel"], + index=0, + help="Choose 'Point' for exact point calculation, or a kernel size for area averaging." + ) +elif shape_type.lower() == "polygon": + include_boundary = st.checkbox( + "Include Boundary Pixels", + value=True, + help="Check to include pixels on the polygon boundary; uncheck to exclude them." + ) -# # Ask user to upload a file based on shape type -# file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"]) - +# Ask user to upload a file based on shape type +file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"]) -# if file_upload is not None: -# # Read the user-uploaded file -# if shape_type.lower() == "point": -# if file_upload.name.endswith('.csv'): -# locations_df = pd.read_csv(file_upload) -# elif file_upload.name.endswith('.geojson'): -# locations_df = gpd.read_file(file_upload) -# elif file_upload.name.endswith('.kml'): -# locations_df = gpd.read_file(file_upload) -# else: -# st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.") -# locations_df = pd.DataFrame() -# if 'geometry' in locations_df.columns: -# if locations_df.geometry.geom_type.isin(['Polygon', 'MultiPolygon']).any(): -# st.warning("The uploaded file contains polygon data. Please select 'Polygon' for processing.") -# st.stop() +if file_upload is not None: + # Read the user-uploaded file + if shape_type.lower() == "point": + if file_upload.name.endswith('.csv'): + locations_df = pd.read_csv(file_upload) + elif file_upload.name.endswith('.geojson'): + locations_df = gpd.read_file(file_upload) + elif file_upload.name.endswith('.kml'): + locations_df = gpd.read_file(file_upload) + else: + st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.") + locations_df = pd.DataFrame() -# with st.spinner('Processing Map...'): -# if locations_df is not None and not locations_df.empty: -# if 'geometry' in locations_df.columns: -# locations_df['latitude'] = locations_df['geometry'].y -# locations_df['longitude'] = locations_df['geometry'].x + if 'geometry' in locations_df.columns: + if locations_df.geometry.geom_type.isin(['Polygon', 'MultiPolygon']).any(): + st.warning("The uploaded file contains polygon data. Please select 'Polygon' for processing.") + st.stop() -# if 'latitude' not in locations_df.columns or 'longitude' not in locations_df.columns: -# st.error("Uploaded file is missing required 'latitude' or 'longitude' columns.") -# else: -# st.write("Preview of the uploaded points data:") -# st.dataframe(locations_df.head()) -# m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10) -# for _, row in locations_df.iterrows(): -# latitude = row['latitude'] -# longitude = row['longitude'] -# if pd.isna(latitude) or pd.isna(longitude): -# continue -# m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name')) -# st.write("Map of Uploaded Points:") -# m.to_streamlit() -# st.session_state.map_data = m + with st.spinner('Processing Map...'): + if locations_df is not None and not locations_df.empty: + if 'geometry' in locations_df.columns: + locations_df['latitude'] = locations_df['geometry'].y + locations_df['longitude'] = locations_df['geometry'].x -# elif shape_type.lower() == "polygon": -# if file_upload.name.endswith('.csv'): -# locations_df = pd.read_csv(file_upload) -# elif file_upload.name.endswith('.geojson'): -# locations_df = gpd.read_file(file_upload) -# elif file_upload.name.endswith('.kml'): -# locations_df = gpd.read_file(file_upload) -# else: -# st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.") -# locations_df = pd.DataFrame() + if 'latitude' not in locations_df.columns or 'longitude' not in locations_df.columns: + st.error("Uploaded file is missing required 'latitude' or 'longitude' columns.") + else: + st.write("Preview of the uploaded points data:") + st.dataframe(locations_df.head()) + m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10) + for _, row in locations_df.iterrows(): + latitude = row['latitude'] + longitude = row['longitude'] + if pd.isna(latitude) or pd.isna(longitude): + continue + m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name')) + st.write("Map of Uploaded Points:") + m.to_streamlit() + st.session_state.map_data = m -# if 'geometry' in locations_df.columns: -# if locations_df.geometry.geom_type.isin(['Point', 'MultiPoint']).any(): -# st.warning("The uploaded file contains point data. Please select 'Point' for processing.") -# st.stop() + elif shape_type.lower() == "polygon": + if file_upload.name.endswith('.csv'): + locations_df = pd.read_csv(file_upload) + elif file_upload.name.endswith('.geojson'): + locations_df = gpd.read_file(file_upload) + elif file_upload.name.endswith('.kml'): + locations_df = gpd.read_file(file_upload) + else: + st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.") + locations_df = pd.DataFrame() -# with st.spinner('Processing Map...'): -# if locations_df is not None and not locations_df.empty: -# if 'geometry' not in locations_df.columns: -# st.error("Uploaded file is missing required 'geometry' column.") -# else: -# st.write("Preview of the uploaded polygons data:") -# st.dataframe(locations_df.head()) -# centroid_lat = locations_df.geometry.centroid.y.mean() -# centroid_lon = locations_df.geometry.centroid.x.mean() -# m = leafmap.Map(center=[centroid_lat, centroid_lon], zoom=10) -# for _, row in locations_df.iterrows(): -# polygon = row['geometry'] -# if polygon.is_valid: -# gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=locations_df.crs) -# m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon')) -# st.write("Map of Uploaded Polygons:") -# m.to_streamlit() -# st.session_state.map_data = m + if 'geometry' in locations_df.columns: + if locations_df.geometry.geom_type.isin(['Point', 'MultiPoint']).any(): + st.warning("The uploaded file contains point data. Please select 'Point' for processing.") + st.stop() -# # Initialize session state for storing results -# if 'results' not in st.session_state: -# st.session_state.results = [] -# if 'last_params' not in st.session_state: -# st.session_state.last_params = {} -# if 'map_data' not in st.session_state: -# st.session_state.map_data = None + with st.spinner('Processing Map...'): + if locations_df is not None and not locations_df.empty: + if 'geometry' not in locations_df.columns: + st.error("Uploaded file is missing required 'geometry' column.") + else: + st.write("Preview of the uploaded polygons data:") + st.dataframe(locations_df.head()) + centroid_lat = locations_df.geometry.centroid.y.mean() + centroid_lon = locations_df.geometry.centroid.x.mean() + m = leafmap.Map(center=[centroid_lat, centroid_lon], zoom=10) + for _, row in locations_df.iterrows(): + polygon = row['geometry'] + if polygon.is_valid: + gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=locations_df.crs) + m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon')) + st.write("Map of Uploaded Polygons:") + m.to_streamlit() + st.session_state.map_data = m -# # Function to check if parameters have changed -# def parameters_changed(): -# return ( -# st.session_state.last_params.get('main_selection') != main_selection or -# st.session_state.last_params.get('dataset_id') != dataset_id or -# st.session_state.last_params.get('selected_bands') != selected_bands or -# st.session_state.last_params.get('custom_formula') != custom_formula or -# st.session_state.last_params.get('start_date_str') != start_date_str or -# st.session_state.last_params.get('end_date_str') != end_date_str or -# st.session_state.last_params.get('shape_type') != shape_type or -# st.session_state.last_params.get('file_upload') != file_upload or -# st.session_state.last_params.get('kernel_size') != kernel_size or -# st.session_state.last_params.get('include_boundary') != include_boundary -# ) +# Initialize session state for storing results +if 'results' not in st.session_state: + st.session_state.results = [] +if 'last_params' not in st.session_state: + st.session_state.last_params = {} +if 'map_data' not in st.session_state: + st.session_state.map_data = None -# # If parameters have changed, reset the results -# if parameters_changed(): -# st.session_state.results = [] -# st.session_state.last_params = { -# 'main_selection': main_selection, -# 'dataset_id': dataset_id, -# 'selected_bands': selected_bands, -# 'custom_formula': custom_formula, -# 'start_date_str': start_date_str, -# 'end_date_str': end_date_str, -# 'shape_type': shape_type, -# 'file_upload': file_upload, -# 'kernel_size': kernel_size, -# 'include_boundary': include_boundary -# } +# Function to check if parameters have changed +def parameters_changed(): + return ( + st.session_state.last_params.get('main_selection') != main_selection or + st.session_state.last_params.get('dataset_id') != dataset_id or + st.session_state.last_params.get('selected_bands') != selected_bands or + st.session_state.last_params.get('custom_formula') != custom_formula or + st.session_state.last_params.get('start_date_str') != start_date_str or + st.session_state.last_params.get('end_date_str') != end_date_str or + st.session_state.last_params.get('shape_type') != shape_type or + st.session_state.last_params.get('file_upload') != file_upload or + st.session_state.last_params.get('kernel_size') != kernel_size or + st.session_state.last_params.get('include_boundary') != include_boundary + ) -# # Function to calculate custom formula using eval safely -# def calculate_custom_formula(image, geometry, selected_bands, custom_formula, reducer_choice, scale=30): -# try: -# band_values = {} -# for band in selected_bands: -# band_names = image.bandNames().getInfo() -# if band not in band_names: -# raise ValueError(f"The band '{band}' does not exist in the image.") -# band_values[band] = image.select(band) +# If parameters have changed, reset the results +if parameters_changed(): + st.session_state.results = [] + st.session_state.last_params = { + 'main_selection': main_selection, + 'dataset_id': dataset_id, + 'selected_bands': selected_bands, + 'custom_formula': custom_formula, + 'start_date_str': start_date_str, + 'end_date_str': end_date_str, + 'shape_type': shape_type, + 'file_upload': file_upload, + 'kernel_size': kernel_size, + 'include_boundary': include_boundary + } -# reducer = get_reducer(reducer_choice) -# reduced_values = {} -# for band in selected_bands: -# reduced_value = band_values[band].reduceRegion( -# reducer=reducer, -# geometry=geometry, -# scale=scale -# ).get(band).getInfo() -# if reduced_value is None: -# reduced_value = 0 -# reduced_values[band] = float(reduced_value) +# Function to calculate custom formula using eval safely +def calculate_custom_formula(image, geometry, selected_bands, custom_formula, reducer_choice, scale=30): + try: + band_values = {} + for band in selected_bands: + band_names = image.bandNames().getInfo() + if band not in band_names: + raise ValueError(f"The band '{band}' does not exist in the image.") + band_values[band] = image.select(band) -# formula = custom_formula -# for band in selected_bands: -# formula = formula.replace(band, str(reduced_values[band])) + reducer = get_reducer(reducer_choice) + reduced_values = {} + for band in selected_bands: + reduced_value = band_values[band].reduceRegion( + reducer=reducer, + geometry=geometry, + scale=scale + ).get(band).getInfo() + if reduced_value is None: + reduced_value = 0 + reduced_values[band] = float(reduced_value) -# result = eval(formula, {"__builtins__": {}}, reduced_values) -# if not isinstance(result, (int, float)): -# raise ValueError("Formula evaluation did not result in a numeric value.") -# return ee.Image.constant(result).rename('custom_result') + formula = custom_formula + for band in selected_bands: + formula = formula.replace(band, str(reduced_values[band])) + + result = eval(formula, {"__builtins__": {}}, reduced_values) + if not isinstance(result, (int, float)): + raise ValueError("Formula evaluation did not result in a numeric value.") + return ee.Image.constant(result).rename('custom_result') -# except ZeroDivisionError: -# st.error("Error: Division by zero occurred in the formula.") -# return ee.Image(0).rename('custom_result').set('error', 'Division by zero') -# except SyntaxError: -# st.error(f"Error: Invalid formula syntax in '{custom_formula}'.") -# return ee.Image(0).rename('custom_result').set('error', 'Invalid syntax') -# except ValueError as e: -# st.error(f"Error: {str(e)}") -# return ee.Image(0).rename('custom_result').set('error', str(e)) -# except Exception as e: -# st.error(f"Unexpected error evaluating formula: {e}") -# return ee.Image(0).rename('custom_result').set('error', str(e)) + except ZeroDivisionError: + st.error("Error: Division by zero occurred in the formula.") + return ee.Image(0).rename('custom_result').set('error', 'Division by zero') + except SyntaxError: + st.error(f"Error: Invalid formula syntax in '{custom_formula}'.") + return ee.Image(0).rename('custom_result').set('error', 'Invalid syntax') + except ValueError as e: + st.error(f"Error: {str(e)}") + return ee.Image(0).rename('custom_result').set('error', str(e)) + except Exception as e: + st.error(f"Unexpected error evaluating formula: {e}") + return ee.Image(0).rename('custom_result').set('error', str(e)) -# # Function to calculate index for a period -# def calculate_index_for_period(image, roi, selected_bands, custom_formula, reducer_choice): -# return calculate_custom_formula(image, roi, selected_bands, custom_formula, reducer_choice) +# Function to calculate index for a period +def calculate_index_for_period(image, roi, selected_bands, custom_formula, reducer_choice): + return calculate_custom_formula(image, roi, selected_bands, custom_formula, reducer_choice) -# # Aggregation functions -# def aggregate_data_daily(collection): -# collection = collection.map(lambda image: image.set('day', ee.Date(image.get('system:time_start')).format('YYYY-MM-dd'))) -# grouped_by_day = collection.aggregate_array('day').distinct() -# def calculate_daily_mean(day): -# daily_collection = collection.filter(ee.Filter.eq('day', day)) -# daily_mean = daily_collection.mean() -# return daily_mean.set('day', day) -# daily_images = ee.List(grouped_by_day.map(calculate_daily_mean)) -# return ee.ImageCollection(daily_images) +# Aggregation functions +def aggregate_data_daily(collection): + collection = collection.map(lambda image: image.set('day', ee.Date(image.get('system:time_start')).format('YYYY-MM-dd'))) + grouped_by_day = collection.aggregate_array('day').distinct() + def calculate_daily_mean(day): + daily_collection = collection.filter(ee.Filter.eq('day', day)) + daily_mean = daily_collection.mean() + return daily_mean.set('day', day) + daily_images = ee.List(grouped_by_day.map(calculate_daily_mean)) + return ee.ImageCollection(daily_images) -# def aggregate_data_weekly(collection): -# def set_week_start(image): -# date = ee.Date(image.get('system:time_start')) -# days_since_week_start = date.getRelative('day', 'week') -# offset = ee.Number(days_since_week_start).multiply(-1) -# week_start = date.advance(offset, 'day') -# return image.set('week_start', week_start.format('YYYY-MM-dd')) -# collection = collection.map(set_week_start) -# grouped_by_week = collection.aggregate_array('week_start').distinct() -# def calculate_weekly_mean(week_start): -# weekly_collection = collection.filter(ee.Filter.eq('week_start', week_start)) -# weekly_mean = weekly_collection.mean() -# return weekly_mean.set('week_start', week_start) -# weekly_images = ee.List(grouped_by_week.map(calculate_weekly_mean)) -# return ee.ImageCollection(weekly_images) +def aggregate_data_weekly(collection): + def set_week_start(image): + date = ee.Date(image.get('system:time_start')) + days_since_week_start = date.getRelative('day', 'week') + offset = ee.Number(days_since_week_start).multiply(-1) + week_start = date.advance(offset, 'day') + return image.set('week_start', week_start.format('YYYY-MM-dd')) + collection = collection.map(set_week_start) + grouped_by_week = collection.aggregate_array('week_start').distinct() + def calculate_weekly_mean(week_start): + weekly_collection = collection.filter(ee.Filter.eq('week_start', week_start)) + weekly_mean = weekly_collection.mean() + return weekly_mean.set('week_start', week_start) + weekly_images = ee.List(grouped_by_week.map(calculate_weekly_mean)) + return ee.ImageCollection(weekly_images) -# def aggregate_data_monthly(collection, start_date, end_date): -# collection = collection.filterDate(start_date, end_date) -# collection = collection.map(lambda image: image.set('month', ee.Date(image.get('system:time_start')).format('YYYY-MM'))) -# grouped_by_month = collection.aggregate_array('month').distinct() -# def calculate_monthly_mean(month): -# monthly_collection = collection.filter(ee.Filter.eq('month', month)) -# monthly_mean = monthly_collection.mean() -# return monthly_mean.set('month', month) -# monthly_images = ee.List(grouped_by_month.map(calculate_monthly_mean)) -# return ee.ImageCollection(monthly_images) +def aggregate_data_monthly(collection, start_date, end_date): + collection = collection.filterDate(start_date, end_date) + collection = collection.map(lambda image: image.set('month', ee.Date(image.get('system:time_start')).format('YYYY-MM'))) + grouped_by_month = collection.aggregate_array('month').distinct() + def calculate_monthly_mean(month): + monthly_collection = collection.filter(ee.Filter.eq('month', month)) + monthly_mean = monthly_collection.mean() + return monthly_mean.set('month', month) + monthly_images = ee.List(grouped_by_month.map(calculate_monthly_mean)) + return ee.ImageCollection(monthly_images) -# def aggregate_data_yearly(collection): -# collection = collection.map(lambda image: image.set('year', ee.Date(image.get('system:time_start')).format('YYYY'))) -# grouped_by_year = collection.aggregate_array('year').distinct() -# def calculate_yearly_mean(year): -# yearly_collection = collection.filter(ee.Filter.eq('year', year)) -# yearly_mean = yearly_collection.mean() -# return yearly_mean.set('year', year) -# yearly_images = ee.List(grouped_by_year.map(calculate_yearly_mean)) -# return ee.ImageCollection(yearly_images) +def aggregate_data_yearly(collection): + collection = collection.map(lambda image: image.set('year', ee.Date(image.get('system:time_start')).format('YYYY'))) + grouped_by_year = collection.aggregate_array('year').distinct() + def calculate_yearly_mean(year): + yearly_collection = collection.filter(ee.Filter.eq('year', year)) + yearly_mean = yearly_collection.mean() + return yearly_mean.set('year', year) + yearly_images = ee.List(grouped_by_year.map(calculate_yearly_mean)) + return ee.ImageCollection(yearly_images) -# # Process aggregation function with kernel and boundary options -# def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, custom_formula="", kernel_size=None, include_boundary=None): -# aggregated_results = [] +# Process aggregation function with kernel and boundary options +def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, custom_formula="", kernel_size=None, include_boundary=None): + aggregated_results = [] -# if not custom_formula: -# st.error("Custom formula cannot be empty. Please provide a formula.") -# return aggregated_results + if not custom_formula: + st.error("Custom formula cannot be empty. Please provide a formula.") + return aggregated_results -# total_steps = len(locations_df) -# progress_bar = st.progress(0) -# progress_text = st.empty() + total_steps = len(locations_df) + progress_bar = st.progress(0) + progress_text = st.empty() -# with st.spinner('Processing data...'): -# if shape_type.lower() == "point": -# for idx, row in locations_df.iterrows(): -# latitude = row.get('latitude') -# longitude = row.get('longitude') -# if pd.isna(latitude) or pd.isna(longitude): -# st.warning(f"Skipping location {idx} with missing latitude or longitude") -# continue + with st.spinner('Processing data...'): + if shape_type.lower() == "point": + for idx, row in locations_df.iterrows(): + latitude = row.get('latitude') + longitude = row.get('longitude') + if pd.isna(latitude) or pd.isna(longitude): + st.warning(f"Skipping location {idx} with missing latitude or longitude") + continue -# location_name = row.get('name', f"Location_{idx}") + location_name = row.get('name', f"Location_{idx}") -# # Define the region of interest based on kernel size -# if kernel_size == "3x3 Kernel": -# # Assuming 30m resolution, 3x3 kernel = 90m x 90m -# buffer_size = 45 # Half of 90m to center the square -# roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds() -# elif kernel_size == "5x5 Kernel": -# # 5x5 kernel = 150m x 150m -# buffer_size = 75 # Half of 150m -# roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds() -# else: # Point -# roi = ee.Geometry.Point([longitude, latitude]) + # Define the region of interest based on kernel size + if kernel_size == "3x3 Kernel": + # Assuming 30m resolution, 3x3 kernel = 90m x 90m + buffer_size = 45 # Half of 90m to center the square + roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds() + elif kernel_size == "5x5 Kernel": + # 5x5 kernel = 150m x 150m + buffer_size = 75 # Half of 150m + roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds() + else: # Point + roi = ee.Geometry.Point([longitude, latitude]) -# collection = ee.ImageCollection(dataset_id) \ -# .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \ -# .filterBounds(roi) + collection = ee.ImageCollection(dataset_id) \ + .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \ + .filterBounds(roi) -# if aggregation_period.lower() == 'daily': -# collection = aggregate_data_daily(collection) -# elif aggregation_period.lower() == 'weekly': -# collection = aggregate_data_weekly(collection) -# elif aggregation_period.lower() == 'monthly': -# collection = aggregate_data_monthly(collection, start_date_str, end_date_str) -# elif aggregation_period.lower() == 'yearly': -# collection = aggregate_data_yearly(collection) + if aggregation_period.lower() == 'daily': + collection = aggregate_data_daily(collection) + elif aggregation_period.lower() == 'weekly': + collection = aggregate_data_weekly(collection) + elif aggregation_period.lower() == 'monthly': + collection = aggregate_data_monthly(collection, start_date_str, end_date_str) + elif aggregation_period.lower() == 'yearly': + collection = aggregate_data_yearly(collection) -# image_list = collection.toList(collection.size()) -# processed_weeks = set() -# for i in range(image_list.size().getInfo()): -# image = ee.Image(image_list.get(i)) + image_list = collection.toList(collection.size()) + processed_weeks = set() + for i in range(image_list.size().getInfo()): + image = ee.Image(image_list.get(i)) -# if aggregation_period.lower() == 'daily': -# timestamp = image.get('day') -# period_label = 'Date' -# date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo() -# elif aggregation_period.lower() == 'weekly': -# timestamp = image.get('week_start') -# period_label = 'Week' -# date = ee.String(timestamp).getInfo() -# if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or -# pd.to_datetime(date) > pd.to_datetime(end_date_str) or -# date in processed_weeks): -# continue -# processed_weeks.add(date) -# elif aggregation_period.lower() == 'monthly': -# timestamp = image.get('month') -# period_label = 'Month' -# date = ee.Date(timestamp).format('YYYY-MM').getInfo() -# elif aggregation_period.lower() == 'yearly': -# timestamp = image.get('year') -# period_label = 'Year' -# date = ee.Date(timestamp).format('YYYY').getInfo() + if aggregation_period.lower() == 'daily': + timestamp = image.get('day') + period_label = 'Date' + date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo() + elif aggregation_period.lower() == 'weekly': + timestamp = image.get('week_start') + period_label = 'Week' + date = ee.String(timestamp).getInfo() + if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or + pd.to_datetime(date) > pd.to_datetime(end_date_str) or + date in processed_weeks): + continue + processed_weeks.add(date) + elif aggregation_period.lower() == 'monthly': + timestamp = image.get('month') + period_label = 'Month' + date = ee.Date(timestamp).format('YYYY-MM').getInfo() + elif aggregation_period.lower() == 'yearly': + timestamp = image.get('year') + period_label = 'Year' + date = ee.Date(timestamp).format('YYYY').getInfo() -# index_image = calculate_index_for_period(image, roi, selected_bands, custom_formula, reducer_choice) + index_image = calculate_index_for_period(image, roi, selected_bands, custom_formula, reducer_choice) -# try: -# index_value = index_image.reduceRegion( -# reducer=get_reducer(reducer_choice), -# geometry=roi, -# scale=30 -# ).get('custom_result') + try: + index_value = index_image.reduceRegion( + reducer=get_reducer(reducer_choice), + geometry=roi, + scale=30 + ).get('custom_result') -# calculated_value = index_value.getInfo() + calculated_value = index_value.getInfo() -# if isinstance(calculated_value, (int, float)): -# aggregated_results.append({ -# 'Location Name': location_name, -# 'Latitude': latitude, -# 'Longitude': longitude, -# period_label: date, -# 'Start Date': start_date_str, -# 'End Date': end_date_str, -# 'Calculated Value': calculated_value -# }) -# else: -# st.warning(f"Skipping invalid value for {location_name} on {date}") -# except Exception as e: -# st.error(f"Error retrieving value for {location_name}: {e}") + if isinstance(calculated_value, (int, float)): + aggregated_results.append({ + 'Location Name': location_name, + 'Latitude': latitude, + 'Longitude': longitude, + period_label: date, + 'Start Date': start_date_str, + 'End Date': end_date_str, + 'Calculated Value': calculated_value + }) + else: + st.warning(f"Skipping invalid value for {location_name} on {date}") + except Exception as e: + st.error(f"Error retrieving value for {location_name}: {e}") -# progress_percentage = (idx + 1) / total_steps -# progress_bar.progress(progress_percentage) -# progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%") + progress_percentage = (idx + 1) / total_steps + progress_bar.progress(progress_percentage) + progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%") -# elif shape_type.lower() == "polygon": -# for idx, row in locations_df.iterrows(): -# polygon_name = row.get('name', f"Polygon_{idx}") -# polygon_geometry = row.get('geometry') -# location_name = polygon_name + elif shape_type.lower() == "polygon": + for idx, row in locations_df.iterrows(): + polygon_name = row.get('name', f"Polygon_{idx}") + polygon_geometry = row.get('geometry') + location_name = polygon_name -# try: -# roi = convert_to_ee_geometry(polygon_geometry) -# if not include_boundary: -# # Erode the polygon by a small buffer (e.g., 1 pixel = 30m) to exclude boundary -# roi = roi.buffer(-30).bounds() -# except ValueError as e: -# st.warning(f"Skipping invalid polygon {polygon_name}: {e}") -# continue + try: + roi = convert_to_ee_geometry(polygon_geometry) + if not include_boundary: + # Erode the polygon by a small buffer (e.g., 1 pixel = 30m) to exclude boundary + roi = roi.buffer(-30).bounds() + except ValueError as e: + st.warning(f"Skipping invalid polygon {polygon_name}: {e}") + continue -# collection = ee.ImageCollection(dataset_id) \ -# .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \ -# .filterBounds(roi) + collection = ee.ImageCollection(dataset_id) \ + .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \ + .filterBounds(roi) -# if aggregation_period.lower() == 'daily': -# collection = aggregate_data_daily(collection) -# elif aggregation_period.lower() == 'weekly': -# collection = aggregate_data_weekly(collection) -# elif aggregation_period.lower() == 'monthly': -# collection = aggregate_data_monthly(collection, start_date_str, end_date_str) -# elif aggregation_period.lower() == 'yearly': -# collection = aggregate_data_yearly(collection) + if aggregation_period.lower() == 'daily': + collection = aggregate_data_daily(collection) + elif aggregation_period.lower() == 'weekly': + collection = aggregate_data_weekly(collection) + elif aggregation_period.lower() == 'monthly': + collection = aggregate_data_monthly(collection, start_date_str, end_date_str) + elif aggregation_period.lower() == 'yearly': + collection = aggregate_data_yearly(collection) -# image_list = collection.toList(collection.size()) -# processed_weeks = set() -# for i in range(image_list.size().getInfo()): -# image = ee.Image(image_list.get(i)) + image_list = collection.toList(collection.size()) + processed_weeks = set() + for i in range(image_list.size().getInfo()): + image = ee.Image(image_list.get(i)) -# if aggregation_period.lower() == 'daily': -# timestamp = image.get('day') -# period_label = 'Date' -# date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo() -# elif aggregation_period.lower() == 'weekly': -# timestamp = image.get('week_start') -# period_label = 'Week' -# date = ee.String(timestamp).getInfo() -# if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or -# pd.to_datetime(date) > pd.to_datetime(end_date_str) or -# date in processed_weeks): -# continue -# processed_weeks.add(date) -# elif aggregation_period.lower() == 'monthly': -# timestamp = image.get('month') -# period_label = 'Month' -# date = ee.Date(timestamp).format('YYYY-MM').getInfo() -# elif aggregation_period.lower() == 'yearly': -# timestamp = image.get('year') -# period_label = 'Year' -# date = ee.Date(timestamp).format('YYYY').getInfo() + if aggregation_period.lower() == 'daily': + timestamp = image.get('day') + period_label = 'Date' + date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo() + elif aggregation_period.lower() == 'weekly': + timestamp = image.get('week_start') + period_label = 'Week' + date = ee.String(timestamp).getInfo() + if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or + pd.to_datetime(date) > pd.to_datetime(end_date_str) or + date in processed_weeks): + continue + processed_weeks.add(date) + elif aggregation_period.lower() == 'monthly': + timestamp = image.get('month') + period_label = 'Month' + date = ee.Date(timestamp).format('YYYY-MM').getInfo() + elif aggregation_period.lower() == 'yearly': + timestamp = image.get('year') + period_label = 'Year' + date = ee.Date(timestamp).format('YYYY').getInfo() -# index_image = calculate_index_for_period(image, roi, selected_bands, custom_formula, reducer_choice) + index_image = calculate_index_for_period(image, roi, selected_bands, custom_formula, reducer_choice) -# try: -# index_value = index_image.reduceRegion( -# reducer=get_reducer(reducer_choice), -# geometry=roi, -# scale=30 -# ).get('custom_result') + try: + index_value = index_image.reduceRegion( + reducer=get_reducer(reducer_choice), + geometry=roi, + scale=30 + ).get('custom_result') -# calculated_value = index_value.getInfo() + calculated_value = index_value.getInfo() -# if isinstance(calculated_value, (int, float)): -# aggregated_results.append({ -# 'Location Name': location_name, -# period_label: date, -# 'Start Date': start_date_str, -# 'End Date': end_date_str, -# 'Calculated Value': calculated_value -# }) -# else: -# st.warning(f"Skipping invalid value for {location_name} on {date}") -# except Exception as e: -# st.error(f"Error retrieving value for {location_name}: {e}") + if isinstance(calculated_value, (int, float)): + aggregated_results.append({ + 'Location Name': location_name, + period_label: date, + 'Start Date': start_date_str, + 'End Date': end_date_str, + 'Calculated Value': calculated_value + }) + else: + st.warning(f"Skipping invalid value for {location_name} on {date}") + except Exception as e: + st.error(f"Error retrieving value for {location_name}: {e}") -# progress_percentage = (idx + 1) / total_steps -# progress_bar.progress(progress_percentage) -# progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%") + progress_percentage = (idx + 1) / total_steps + progress_bar.progress(progress_percentage) + progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%") -# if aggregated_results: -# result_df = pd.DataFrame(aggregated_results) -# if aggregation_period.lower() == 'daily': -# agg_dict = { -# 'Start Date': 'first', -# 'End Date': 'first', -# 'Calculated Value': 'mean' -# } -# if shape_type.lower() == 'point': -# agg_dict['Latitude'] = 'first' -# agg_dict['Longitude'] = 'first' -# aggregated_output = result_df.groupby('Location Name').agg(agg_dict).reset_index() -# aggregated_output.rename(columns={'Calculated Value': 'Aggregated Value'}, inplace=True) -# return aggregated_output.to_dict(orient='records') -# else: -# return result_df.to_dict(orient='records') -# return [] + if aggregated_results: + result_df = pd.DataFrame(aggregated_results) + if aggregation_period.lower() == 'daily': + agg_dict = { + 'Start Date': 'first', + 'End Date': 'first', + 'Calculated Value': 'mean' + } + if shape_type.lower() == 'point': + agg_dict['Latitude'] = 'first' + agg_dict['Longitude'] = 'first' + aggregated_output = result_df.groupby('Location Name').agg(agg_dict).reset_index() + aggregated_output.rename(columns={'Calculated Value': 'Aggregated Value'}, inplace=True) + return aggregated_output.to_dict(orient='records') + else: + return result_df.to_dict(orient='records') + return [] -# # Button to trigger calculation -# if st.button(f"Calculate({custom_formula})"): -# if file_upload is not None: -# if shape_type.lower() in ["point", "polygon"]: -# results = process_aggregation( -# locations_df, -# start_date_str, -# end_date_str, -# dataset_id, -# selected_bands, -# reducer_choice, -# shape_type, -# aggregation_period, -# custom_formula, -# kernel_size=kernel_size, -# include_boundary=include_boundary -# ) -# if results: -# result_df = pd.DataFrame(results) -# st.write(f"Processed Results Table ({aggregation_period}):") -# st.dataframe(result_df) -# filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y/%m/%d')}_{end_date.strftime('%Y/%m/%d')}_{aggregation_period.lower()}.csv" -# st.download_button( -# label="Download results as CSV", -# data=result_df.to_csv(index=False).encode('utf-8'), -# file_name=filename, -# mime='text/csv' -# ) -# st.spinner('') -# st.success('Processing complete!') -# else: -# st.warning("No results were generated.") -# else: -# st.warning("Please upload a file.") +# Button to trigger calculation +if st.button(f"Calculate({custom_formula})"): + if file_upload is not None: + if shape_type.lower() in ["point", "polygon"]: + results = process_aggregation( + locations_df, + start_date_str, + end_date_str, + dataset_id, + selected_bands, + reducer_choice, + shape_type, + aggregation_period, + custom_formula, + kernel_size=kernel_size, + include_boundary=include_boundary + ) + if results: + result_df = pd.DataFrame(results) + st.write(f"Processed Results Table ({aggregation_period}):") + st.dataframe(result_df) + filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y/%m/%d')}_{end_date.strftime('%Y/%m/%d')}_{aggregation_period.lower()}.csv" + st.download_button( + label="Download results as CSV", + data=result_df.to_csv(index=False).encode('utf-8'), + file_name=filename, + mime='text/csv' + ) + st.spinner('') + st.success('Processing complete!') + else: + st.warning("No results were generated.") + else: + st.warning("Please upload a file.") -import streamlit as st -import json -import ee -import os -import pandas as pd -import geopandas as gpd -from datetime import datetime -import leafmap.foliumap as leafmap -import re -from shapely.geometry import base -from lxml import etree -from xml.etree import ElementTree as ET +# import streamlit as st +# import json +# import ee +# import os +# import pandas as pd +# import geopandas as gpd +# from datetime import datetime +# import leafmap.foliumap as leafmap +# import re +# from shapely.geometry import base +# from lxml import etree +# from xml.etree import ElementTree as ET -# Set up the page layout -st.set_page_config(layout="wide") +# # Set up the page layout +# st.set_page_config(layout="wide") -# Custom button styling -m = st.markdown( - """ - """, - unsafe_allow_html=True, -) +# # Custom button styling +# m = st.markdown( +# """ +# """, +# unsafe_allow_html=True, +# ) -# Logo -st.write( - f""" -
- - -
- """, - unsafe_allow_html=True, -) +# # Logo +# st.write( +# f""" +#
+# +# +#
+# """, +# unsafe_allow_html=True, +# ) -# Title -st.markdown( - f""" -

Precision Analysis for Vegetation, Water, and Air Quality

- """, - unsafe_allow_html=True, -) -st.write("

User Inputs

", unsafe_allow_html=True) +# # Title +# st.markdown( +# f""" +#

Precision Analysis for Vegetation, Water, and Air Quality

+# """, +# unsafe_allow_html=True, +# ) +# st.write("

User Inputs

", unsafe_allow_html=True) -# Authenticate and initialize Earth Engine -earthengine_credentials = os.environ.get("EE_Authentication") +# # Authenticate and initialize Earth Engine +# earthengine_credentials = os.environ.get("EE_Authentication") -# Initialize Earth Engine with secret credentials -os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True) -with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f: - f.write(earthengine_credentials) +# # Initialize Earth Engine with secret credentials +# os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True) +# with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f: +# f.write(earthengine_credentials) -ee.Initialize(project='ee-yashsacisro24') +# ee.Initialize(project='ee-yashsacisro24') -# Load the Sentinel dataset options from JSON file -with open("sentinel_datasets.json") as f: - data = json.load(f) +# # Load the Sentinel dataset options from JSON file +# with open("sentinel_datasets.json") as f: +# data = json.load(f) -# Display the title for the Streamlit app -st.title("Sentinel Dataset") +# # Display the title for the Streamlit app +# st.title("Sentinel Dataset") -# Select dataset category (main selection) -main_selection = st.selectbox("Select Sentinel Dataset Category", list(data.keys())) +# # Select dataset category (main selection) +# main_selection = st.selectbox("Select Sentinel Dataset Category", list(data.keys())) -# If a category is selected, display the sub-options (specific datasets) -if main_selection: - sub_options = data[main_selection]["sub_options"] - sub_selection = st.selectbox("Select Specific Dataset ID", list(sub_options.keys())) +# # If a category is selected, display the sub-options (specific datasets) +# if main_selection: +# sub_options = data[main_selection]["sub_options"] +# sub_selection = st.selectbox("Select Specific Dataset ID", list(sub_options.keys())) - # Display the selected dataset ID based on user input - if sub_selection: - st.write(f"You selected: {main_selection} -> {sub_options[sub_selection]}") - st.write(f"Dataset ID: {sub_selection}") - dataset_id = sub_selection # Use the key directly as the dataset ID +# # Display the selected dataset ID based on user input +# if sub_selection: +# st.write(f"You selected: {main_selection} -> {sub_options[sub_selection]}") +# st.write(f"Dataset ID: {sub_selection}") +# dataset_id = sub_selection # Use the key directly as the dataset ID -# Earth Engine Index Calculator Section -st.header("Earth Engine Index Calculator") +# # Earth Engine Index Calculator Section +# st.header("Earth Engine Index Calculator") -# Load band information based on selected dataset -if main_selection and sub_selection: - dataset_bands = data[main_selection]["bands"].get(sub_selection, []) - st.write(f"Available Bands for {sub_options[sub_selection]}: {', '.join(dataset_bands)}") +# # Load band information based on selected dataset +# if main_selection and sub_selection: +# dataset_bands = data[main_selection]["bands"].get(sub_selection, []) +# st.write(f"Available Bands for {sub_options[sub_selection]}: {', '.join(dataset_bands)}") - # Allow user to select 1 or 2 bands - selected_bands = st.multiselect( - "Select 1 or 2 Bands for Calculation", - options=dataset_bands, - default=[dataset_bands[0]] if dataset_bands else [], - help="Select at least 1 band and up to 2 bands." - ) +# # Allow user to select 1 or 2 bands +# selected_bands = st.multiselect( +# "Select 1 or 2 Bands for Calculation", +# options=dataset_bands, +# default=[dataset_bands[0]] if dataset_bands else [], +# help="Select at least 1 band and up to 2 bands." +# ) - # Ensure minimum 1 and maximum 2 bands are selected - if len(selected_bands) < 1: - st.warning("Please select at least one band.") - st.stop() - elif len(selected_bands) > 2: - st.warning("You can select a maximum of 2 bands.") - st.stop() +# # Ensure minimum 1 and maximum 2 bands are selected +# if len(selected_bands) < 1: +# st.warning("Please select at least one band.") +# st.stop() +# elif len(selected_bands) > 2: +# st.warning("You can select a maximum of 2 bands.") +# st.stop() - # Show custom formula input if bands are selected - if selected_bands: - default_formula = ( - f"{selected_bands[0]}" if len(selected_bands) == 1 - else f"({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})" - ) - custom_formula = st.text_input( - "Enter Custom Formula (e.g., 'B3*B5/2' or '(B8 - B4) / (B8 + B4)')", - value=default_formula, - help=f"Use {', '.join(selected_bands)} in your formula. Example: 'B3*B5/2'" - ) +# # Show custom formula input if bands are selected +# if selected_bands: +# default_formula = ( +# f"{selected_bands[0]}" if len(selected_bands) == 1 +# else f"({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})" +# ) +# custom_formula = st.text_input( +# "Enter Custom Formula (e.g., 'B3*B5/2' or '(B8 - B4) / (B8 + B4)')", +# value=default_formula, +# help=f"Use {', '.join(selected_bands)} in your formula. Example: 'B3*B5/2'" +# ) - if not custom_formula: - st.warning("Please enter a custom formula to proceed.") - st.stop() +# if not custom_formula: +# st.warning("Please enter a custom formula to proceed.") +# st.stop() - # Display the formula - st.write(f"Custom Formula: {custom_formula}") +# # Display the formula +# st.write(f"Custom Formula: {custom_formula}") -# Function to get the corresponding reducer based on user input -def get_reducer(reducer_name): - """ - Map user-friendly reducer names to Earth Engine reducer objects. - """ - reducers = { - 'mean': ee.Reducer.mean(), - 'sum': ee.Reducer.sum(), - 'median': ee.Reducer.median(), - 'min': ee.Reducer.min(), - 'max': ee.Reducer.max(), - 'count': ee.Reducer.count(), - } - return reducers.get(reducer_name.lower(), ee.Reducer.mean()) +# # Function to get the corresponding reducer based on user input +# def get_reducer(reducer_name): +# """ +# Map user-friendly reducer names to Earth Engine reducer objects. +# """ +# reducers = { +# 'mean': ee.Reducer.mean(), +# 'sum': ee.Reducer.sum(), +# 'median': ee.Reducer.median(), +# 'min': ee.Reducer.min(), +# 'max': ee.Reducer.max(), +# 'count': ee.Reducer.count(), +# } +# return reducers.get(reducer_name.lower(), ee.Reducer.mean()) -# Streamlit selectbox for reducer choice -reducer_choice = st.selectbox( - "Select Reducer", - ['mean', 'sum', 'median', 'min', 'max', 'count'], - index=0 # Default to 'mean' -) +# # Streamlit selectbox for reducer choice +# reducer_choice = st.selectbox( +# "Select Reducer", +# ['mean', 'sum', 'median', 'min', 'max', 'count'], +# index=0 # Default to 'mean' +# ) -# Function to convert geometry to Earth Engine format -def convert_to_ee_geometry(geometry): - if isinstance(geometry, base.BaseGeometry): - if geometry.is_valid: - geojson = geometry.__geo_interface__ - return ee.Geometry(geojson) - else: - raise ValueError("Invalid geometry: The polygon geometry is not valid.") - elif isinstance(geometry, dict) or isinstance(geometry, str): - try: - if isinstance(geometry, str): - geometry = json.loads(geometry) - if 'type' in geometry and 'coordinates' in geometry: - return ee.Geometry(geometry) - else: - raise ValueError("GeoJSON format is invalid.") - except Exception as e: - raise ValueError(f"Error parsing GeoJSON: {e}") - elif isinstance(geometry, str) and geometry.lower().endswith(".kml"): - try: - tree = ET.parse(geometry) - kml_root = tree.getroot() - kml_namespace = {'kml': 'http://www.opengis.net/kml/2.2'} - coordinates = kml_root.findall(".//kml:coordinates", kml_namespace) - if coordinates: - coords_text = coordinates[0].text.strip() - coords = coords_text.split() - coords = [tuple(map(float, coord.split(','))) for coord in coords] - geojson = {"type": "Polygon", "coordinates": [coords]} - return ee.Geometry(geojson) - else: - raise ValueError("KML does not contain valid coordinates.") - except Exception as e: - raise ValueError(f"Error parsing KML: {e}") - else: - raise ValueError("Unsupported geometry input type. Supported types are Shapely, GeoJSON, and KML.") +# # Function to convert geometry to Earth Engine format +# def convert_to_ee_geometry(geometry): +# if isinstance(geometry, base.BaseGeometry): +# if geometry.is_valid: +# geojson = geometry.__geo_interface__ +# return ee.Geometry(geojson) +# else: +# raise ValueError("Invalid geometry: The polygon geometry is not valid.") +# elif isinstance(geometry, dict) or isinstance(geometry, str): +# try: +# if isinstance(geometry, str): +# geometry = json.loads(geometry) +# if 'type' in geometry and 'coordinates' in geometry: +# return ee.Geometry(geometry) +# else: +# raise ValueError("GeoJSON format is invalid.") +# except Exception as e: +# raise ValueError(f"Error parsing GeoJSON: {e}") +# elif isinstance(geometry, str) and geometry.lower().endswith(".kml"): +# try: +# tree = ET.parse(geometry) +# kml_root = tree.getroot() +# kml_namespace = {'kml': 'http://www.opengis.net/kml/2.2'} +# coordinates = kml_root.findall(".//kml:coordinates", kml_namespace) +# if coordinates: +# coords_text = coordinates[0].text.strip() +# coords = coords_text.split() +# coords = [tuple(map(float, coord.split(','))) for coord in coords] +# geojson = {"type": "Polygon", "coordinates": [coords]} +# return ee.Geometry(geojson) +# else: +# raise ValueError("KML does not contain valid coordinates.") +# except Exception as e: +# raise ValueError(f"Error parsing KML: {e}") +# else: +# raise ValueError("Unsupported geometry input type. Supported types are Shapely, GeoJSON, and KML.") -# Date Input for Start and End Dates -start_date = st.date_input("Start Date", value=pd.to_datetime('2024-11-01')) -end_date = st.date_input("End Date", value=pd.to_datetime('2024-12-01')) +# # Date Input for Start and End Dates +# start_date = st.date_input("Start Date", value=pd.to_datetime('2024-11-01')) +# end_date = st.date_input("End Date", value=pd.to_datetime('2024-12-01')) -# Convert start_date and end_date to string format for Earth Engine -start_date_str = start_date.strftime('%Y-%m-%d') -end_date_str = end_date.strftime('%Y-%m-%d') +# # Convert start_date and end_date to string format for Earth Engine +# start_date_str = start_date.strftime('%Y-%m-%d') +# end_date_str = end_date.strftime('%Y-%m-%d') -# Aggregation period selection (changed "Daily" to "Custom") -aggregation_period = st.selectbox( - "Select Aggregation Period", - ["Custom (Start Date to End Date)", "Weekly", "Monthly", "Yearly"], - index=0, - help="Custom processes each image in the date range; other options aggregate by period." -) +# # Aggregation period selection (changed "Daily" to "Custom") +# aggregation_period = st.selectbox( +# "Select Aggregation Period", +# ["Custom (Start Date to End Date)", "Weekly", "Monthly", "Yearly"], +# index=0, +# help="Custom processes each image in the date range; other options aggregate by period." +# ) -# Ask user whether they want to process 'Point' or 'Polygon' data -shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"]) +# # Ask user whether they want to process 'Point' or 'Polygon' data +# shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"]) -# Ask user to upload a file based on shape type -file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"]) +# # Ask user to upload a file based on shape type +# file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"]) -# Additional options based on shape type -kernel_size = None -include_boundary = None -if shape_type.lower() == "point": - kernel_size = st.selectbox( - "Select Calculation Area", - ["Point", "3x3 Kernel", "5x5 Kernel"], - index=0, - help="Choose 'Point' for exact point calculation, or a kernel size for area averaging." - ) -elif shape_type.lower() == "polygon": - include_boundary = st.checkbox( - "Include Boundary Pixels", - value=True, - help="Check to include pixels on the polygon boundary; uncheck to exclude them." - ) +# # Additional options based on shape type +# kernel_size = None +# include_boundary = None +# if shape_type.lower() == "point": +# kernel_size = st.selectbox( +# "Select Calculation Area", +# ["Point", "3x3 Kernel", "5x5 Kernel"], +# index=0, +# help="Choose 'Point' for exact point calculation, or a kernel size for area averaging." +# ) +# elif shape_type.lower() == "polygon": +# include_boundary = st.checkbox( +# "Include Boundary Pixels", +# value=True, +# help="Check to include pixels on the polygon boundary; uncheck to exclude them." +# ) -if file_upload is not None: - # Read the user-uploaded file - if shape_type.lower() == "point": - if file_upload.name.endswith('.csv'): - locations_df = pd.read_csv(file_upload) - elif file_upload.name.endswith('.geojson'): - locations_df = gpd.read_file(file_upload) - elif file_upload.name.endswith('.kml'): - locations_df = gpd.read_file(file_upload) - else: - st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.") - locations_df = pd.DataFrame() +# if file_upload is not None: +# # Read the user-uploaded file +# if shape_type.lower() == "point": +# if file_upload.name.endswith('.csv'): +# locations_df = pd.read_csv(file_upload) +# elif file_upload.name.endswith('.geojson'): +# locations_df = gpd.read_file(file_upload) +# elif file_upload.name.endswith('.kml'): +# locations_df = gpd.read_file(file_upload) +# else: +# st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.") +# locations_df = pd.DataFrame() - if 'geometry' in locations_df.columns: - if locations_df.geometry.geom_type.isin(['Polygon', 'MultiPolygon']).any(): - st.warning("The uploaded file contains polygon data. Please select 'Polygon' for processing.") - st.stop() +# if 'geometry' in locations_df.columns: +# if locations_df.geometry.geom_type.isin(['Polygon', 'MultiPolygon']).any(): +# st.warning("The uploaded file contains polygon data. Please select 'Polygon' for processing.") +# st.stop() - with st.spinner('Processing Map...'): - if locations_df is not None and not locations_df.empty: - if 'geometry' in locations_df.columns: - locations_df['latitude'] = locations_df['geometry'].y - locations_df['longitude'] = locations_df['geometry'].x +# with st.spinner('Processing Map...'): +# if locations_df is not None and not locations_df.empty: +# if 'geometry' in locations_df.columns: +# locations_df['latitude'] = locations_df['geometry'].y +# locations_df['longitude'] = locations_df['geometry'].x - if 'latitude' not in locations_df.columns or 'longitude' not in locations_df.columns: - st.error("Uploaded file is missing required 'latitude' or 'longitude' columns.") - else: - st.write("Preview of the uploaded points data:") - st.dataframe(locations_df.head()) - m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10) - for _, row in locations_df.iterrows(): - latitude = row['latitude'] - longitude = row['longitude'] - if pd.isna(latitude) or pd.isna(longitude): - continue - m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name')) - st.write("Map of Uploaded Points:") - m.to_streamlit() - st.session_state.map_data = m +# if 'latitude' not in locations_df.columns or 'longitude' not in locations_df.columns: +# st.error("Uploaded file is missing required 'latitude' or 'longitude' columns.") +# else: +# st.write("Preview of the uploaded points data:") +# st.dataframe(locations_df.head()) +# m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10) +# for _, row in locations_df.iterrows(): +# latitude = row['latitude'] +# longitude = row['longitude'] +# if pd.isna(latitude) or pd.isna(longitude): +# continue +# m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name')) +# st.write("Map of Uploaded Points:") +# m.to_streamlit() +# st.session_state.map_data = m - elif shape_type.lower() == "polygon": - if file_upload.name.endswith('.csv'): - locations_df = pd.read_csv(file_upload) - elif file_upload.name.endswith('.geojson'): - locations_df = gpd.read_file(file_upload) - elif file_upload.name.endswith('.kml'): - locations_df = gpd.read_file(file_upload) - else: - st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.") - locations_df = pd.DataFrame() +# elif shape_type.lower() == "polygon": +# if file_upload.name.endswith('.csv'): +# locations_df = pd.read_csv(file_upload) +# elif file_upload.name.endswith('.geojson'): +# locations_df = gpd.read_file(file_upload) +# elif file_upload.name.endswith('.kml'): +# locations_df = gpd.read_file(file_upload) +# else: +# st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.") +# locations_df = pd.DataFrame() - if 'geometry' in locations_df.columns: - if locations_df.geometry.geom_type.isin(['Point', 'MultiPoint']).any(): - st.warning("The uploaded file contains point data. Please select 'Point' for processing.") - st.stop() +# if 'geometry' in locations_df.columns: +# if locations_df.geometry.geom_type.isin(['Point', 'MultiPoint']).any(): +# st.warning("The uploaded file contains point data. Please select 'Point' for processing.") +# st.stop() - with st.spinner('Processing Map...'): - if locations_df is not None and not locations_df.empty: - if 'geometry' not in locations_df.columns: - st.error("Uploaded file is missing required 'geometry' column.") - else: - st.write("Preview of the uploaded polygons data:") - st.dataframe(locations_df.head()) - centroid_lat = locations_df.geometry.centroid.y.mean() - centroid_lon = locations_df.geometry.centroid.x.mean() - m = leafmap.Map(center=[centroid_lat, centroid_lon], zoom=10) - for _, row in locations_df.iterrows(): - polygon = row['geometry'] - if polygon.is_valid: - gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=locations_df.crs) - m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon')) - st.write("Map of Uploaded Polygons:") - m.to_streamlit() - st.session_state.map_data = m +# with st.spinner('Processing Map...'): +# if locations_df is not None and not locations_df.empty: +# if 'geometry' not in locations_df.columns: +# st.error("Uploaded file is missing required 'geometry' column.") +# else: +# st.write("Preview of the uploaded polygons data:") +# st.dataframe(locations_df.head()) +# centroid_lat = locations_df.geometry.centroid.y.mean() +# centroid_lon = locations_df.geometry.centroid.x.mean() +# m = leafmap.Map(center=[centroid_lat, centroid_lon], zoom=10) +# for _, row in locations_df.iterrows(): +# polygon = row['geometry'] +# if polygon.is_valid: +# gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=locations_df.crs) +# m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon')) +# st.write("Map of Uploaded Polygons:") +# m.to_streamlit() +# st.session_state.map_data = m -# Initialize session state for storing results -if 'results' not in st.session_state: - st.session_state.results = [] -if 'last_params' not in st.session_state: - st.session_state.last_params = {} -if 'map_data' not in st.session_state: - st.session_state.map_data = None +# # Initialize session state for storing results +# if 'results' not in st.session_state: +# st.session_state.results = [] +# if 'last_params' not in st.session_state: +# st.session_state.last_params = {} +# if 'map_data' not in st.session_state: +# st.session_state.map_data = None -# Function to check if parameters have changed -def parameters_changed(): - return ( - st.session_state.last_params.get('main_selection') != main_selection or - st.session_state.last_params.get('dataset_id') != dataset_id or - st.session_state.last_params.get('selected_bands') != selected_bands or - st.session_state.last_params.get('custom_formula') != custom_formula or - st.session_state.last_params.get('start_date_str') != start_date_str or - st.session_state.last_params.get('end_date_str') != end_date_str or - st.session_state.last_params.get('shape_type') != shape_type or - st.session_state.last_params.get('file_upload') != file_upload or - st.session_state.last_params.get('kernel_size') != kernel_size or - st.session_state.last_params.get('include_boundary') != include_boundary - ) +# # Function to check if parameters have changed +# def parameters_changed(): +# return ( +# st.session_state.last_params.get('main_selection') != main_selection or +# st.session_state.last_params.get('dataset_id') != dataset_id or +# st.session_state.last_params.get('selected_bands') != selected_bands or +# st.session_state.last_params.get('custom_formula') != custom_formula or +# st.session_state.last_params.get('start_date_str') != start_date_str or +# st.session_state.last_params.get('end_date_str') != end_date_str or +# st.session_state.last_params.get('shape_type') != shape_type or +# st.session_state.last_params.get('file_upload') != file_upload or +# st.session_state.last_params.get('kernel_size') != kernel_size or +# st.session_state.last_params.get('include_boundary') != include_boundary +# ) -# If parameters have changed, reset the results -if parameters_changed(): - st.session_state.results = [] - st.session_state.last_params = { - 'main_selection': main_selection, - 'dataset_id': dataset_id, - 'selected_bands': selected_bands, - 'custom_formula': custom_formula, - 'start_date_str': start_date_str, - 'end_date_str': end_date_str, - 'shape_type': shape_type, - 'file_upload': file_upload, - 'kernel_size': kernel_size, - 'include_boundary': include_boundary - } +# # If parameters have changed, reset the results +# if parameters_changed(): +# st.session_state.results = [] +# st.session_state.last_params = { +# 'main_selection': main_selection, +# 'dataset_id': dataset_id, +# 'selected_bands': selected_bands, +# 'custom_formula': custom_formula, +# 'start_date_str': start_date_str, +# 'end_date_str': end_date_str, +# 'shape_type': shape_type, +# 'file_upload': file_upload, +# 'kernel_size': kernel_size, +# 'include_boundary': include_boundary +# } -# Function to calculate custom formula using eval safely -def calculate_custom_formula(image, geometry, selected_bands, custom_formula, reducer_choice, scale=30): - try: - band_values = {} - for band in selected_bands: - band_names = image.bandNames().getInfo() - if band not in band_names: - raise ValueError(f"The band '{band}' does not exist in the image.") - band_values[band] = image.select(band) +# # Function to calculate custom formula using eval safely +# def calculate_custom_formula(image, geometry, selected_bands, custom_formula, reducer_choice, scale=30): +# try: +# band_values = {} +# for band in selected_bands: +# band_names = image.bandNames().getInfo() +# if band not in band_names: +# raise ValueError(f"The band '{band}' does not exist in the image.") +# band_values[band] = image.select(band) - reducer = get_reducer(reducer_choice) - reduced_values = {} - for band in selected_bands: - reduced_value = band_values[band].reduceRegion( - reducer=reducer, - geometry=geometry, - scale=scale - ).get(band).getInfo() - if reduced_value is None: - reduced_value = 0 - reduced_values[band] = float(reduced_value) +# reducer = get_reducer(reducer_choice) +# reduced_values = {} +# for band in selected_bands: +# reduced_value = band_values[band].reduceRegion( +# reducer=reducer, +# geometry=geometry, +# scale=scale +# ).get(band).getInfo() +# if reduced_value is None: +# reduced_value = 0 +# reduced_values[band] = float(reduced_value) - formula = custom_formula - for band in selected_bands: - formula = formula.replace(band, str(reduced_values[band])) +# formula = custom_formula +# for band in selected_bands: +# formula = formula.replace(band, str(reduced_values[band])) - result = eval(formula, {"__builtins__": {}}, reduced_values) - if not isinstance(result, (int, float)): - raise ValueError("Formula evaluation did not result in a numeric value.") - return ee.Image.constant(result).rename('custom_result') +# result = eval(formula, {"__builtins__": {}}, reduced_values) +# if not isinstance(result, (int, float)): +# raise ValueError("Formula evaluation did not result in a numeric value.") +# return ee.Image.constant(result).rename('custom_result') - except ZeroDivisionError: - st.error("Error: Division by zero occurred in the formula.") - return ee.Image(0).rename('custom_result').set('error', 'Division by zero') - except SyntaxError: - st.error(f"Error: Invalid formula syntax in '{custom_formula}'.") - return ee.Image(0).rename('custom_result').set('error', 'Invalid syntax') - except ValueError as e: - st.error(f"Error: {str(e)}") - return ee.Image(0).rename('custom_result').set('error', str(e)) - except Exception as e: - st.error(f"Unexpected error evaluating formula: {e}") - return ee.Image(0).rename('custom_result').set('error', str(e)) +# except ZeroDivisionError: +# st.error("Error: Division by zero occurred in the formula.") +# return ee.Image(0).rename('custom_result').set('error', 'Division by zero') +# except SyntaxError: +# st.error(f"Error: Invalid formula syntax in '{custom_formula}'.") +# return ee.Image(0).rename('custom_result').set('error', 'Invalid syntax') +# except ValueError as e: +# st.error(f"Error: {str(e)}") +# return ee.Image(0).rename('custom_result').set('error', str(e)) +# except Exception as e: +# st.error(f"Unexpected error evaluating formula: {e}") +# return ee.Image(0).rename('custom_result').set('error', str(e)) -# Function to calculate index for a period -def calculate_index_for_period(image, roi, selected_bands, custom_formula, reducer_choice): - return calculate_custom_formula(image, roi, selected_bands, custom_formula, reducer_choice) +# # Function to calculate index for a period +# def calculate_index_for_period(image, roi, selected_bands, custom_formula, reducer_choice): +# return calculate_custom_formula(image, roi, selected_bands, custom_formula, reducer_choice) -# Aggregation functions (removed aggregate_data_daily, renamed to aggregate_data_custom) -def aggregate_data_custom(collection, start_date, end_date): - # Simply filter by the date range without further aggregation - return collection.filterDate(start_date, end_date) +# # Aggregation functions (removed aggregate_data_daily, renamed to aggregate_data_custom) +# def aggregate_data_custom(collection, start_date, end_date): +# # Simply filter by the date range without further aggregation +# return collection.filterDate(start_date, end_date) -def aggregate_data_weekly(collection): - def set_week_start(image): - date = ee.Date(image.get('system:time_start')) - days_since_week_start = date.getRelative('day', 'week') - offset = ee.Number(days_since_week_start).multiply(-1) - week_start = date.advance(offset, 'day') - return image.set('week_start', week_start.format('YYYY-MM-dd')) - collection = collection.map(set_week_start) - grouped_by_week = collection.aggregate_array('week_start').distinct() - def calculate_weekly_mean(week_start): - weekly_collection = collection.filter(ee.Filter.eq('week_start', week_start)) - weekly_mean = weekly_collection.mean() - return weekly_mean.set('week_start', week_start) - weekly_images = ee.List(grouped_by_week.map(calculate_weekly_mean)) - return ee.ImageCollection(weekly_images) +# def aggregate_data_weekly(collection): +# def set_week_start(image): +# date = ee.Date(image.get('system:time_start')) +# days_since_week_start = date.getRelative('day', 'week') +# offset = ee.Number(days_since_week_start).multiply(-1) +# week_start = date.advance(offset, 'day') +# return image.set('week_start', week_start.format('YYYY-MM-dd')) +# collection = collection.map(set_week_start) +# grouped_by_week = collection.aggregate_array('week_start').distinct() +# def calculate_weekly_mean(week_start): +# weekly_collection = collection.filter(ee.Filter.eq('week_start', week_start)) +# weekly_mean = weekly_collection.mean() +# return weekly_mean.set('week_start', week_start) +# weekly_images = ee.List(grouped_by_week.map(calculate_weekly_mean)) +# return ee.ImageCollection(weekly_images) -def aggregate_data_monthly(collection, start_date, end_date): - collection = collection.filterDate(start_date, end_date) - collection = collection.map(lambda image: image.set('month', ee.Date(image.get('system:time_start')).format('YYYY-MM'))) - grouped_by_month = collection.aggregate_array('month').distinct() - def calculate_monthly_mean(month): - monthly_collection = collection.filter(ee.Filter.eq('month', month)) - monthly_mean = monthly_collection.mean() - return monthly_mean.set('month', month) - monthly_images = ee.List(grouped_by_month.map(calculate_monthly_mean)) - return ee.ImageCollection(monthly_images) +# def aggregate_data_monthly(collection, start_date, end_date): +# collection = collection.filterDate(start_date, end_date) +# collection = collection.map(lambda image: image.set('month', ee.Date(image.get('system:time_start')).format('YYYY-MM'))) +# grouped_by_month = collection.aggregate_array('month').distinct() +# def calculate_monthly_mean(month): +# monthly_collection = collection.filter(ee.Filter.eq('month', month)) +# monthly_mean = monthly_collection.mean() +# return monthly_mean.set('month', month) +# monthly_images = ee.List(grouped_by_month.map(calculate_monthly_mean)) +# return ee.ImageCollection(monthly_images) -def aggregate_data_yearly(collection): - collection = collection.map(lambda image: image.set('year', ee.Date(image.get('system:time_start')).format('YYYY'))) - grouped_by_year = collection.aggregate_array('year').distinct() - def calculate_yearly_mean(year): - yearly_collection = collection.filter(ee.Filter.eq('year', year)) - yearly_mean = yearly_collection.mean() - return yearly_mean.set('year', year) - yearly_images = ee.List(grouped_by_year.map(calculate_yearly_mean)) - return ee.ImageCollection(yearly_images) +# def aggregate_data_yearly(collection): +# collection = collection.map(lambda image: image.set('year', ee.Date(image.get('system:time_start')).format('YYYY'))) +# grouped_by_year = collection.aggregate_array('year').distinct() +# def calculate_yearly_mean(year): +# yearly_collection = collection.filter(ee.Filter.eq('year', year)) +# yearly_mean = yearly_collection.mean() +# return yearly_mean.set('year', year) +# yearly_images = ee.List(grouped_by_year.map(calculate_yearly_mean)) +# return ee.ImageCollection(yearly_images) -# Process aggregation function with kernel and boundary options -def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, custom_formula="", kernel_size=None, include_boundary=None): - aggregated_results = [] +# # Process aggregation function with kernel and boundary options +# def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, custom_formula="", kernel_size=None, include_boundary=None): +# aggregated_results = [] - if not custom_formula: - st.error("Custom formula cannot be empty. Please provide a formula.") - return aggregated_results +# if not custom_formula: +# st.error("Custom formula cannot be empty. Please provide a formula.") +# return aggregated_results - total_steps = len(locations_df) - progress_bar = st.progress(0) - progress_text = st.empty() +# total_steps = len(locations_df) +# progress_bar = st.progress(0) +# progress_text = st.empty() - with st.spinner('Processing data...'): - if shape_type.lower() == "point": - for idx, row in locations_df.iterrows(): - latitude = row.get('latitude') - longitude = row.get('longitude') - if pd.isna(latitude) or pd.isna(longitude): - st.warning(f"Skipping location {idx} with missing latitude or longitude") - continue +# with st.spinner('Processing data...'): +# if shape_type.lower() == "point": +# for idx, row in locations_df.iterrows(): +# latitude = row.get('latitude') +# longitude = row.get('longitude') +# if pd.isna(latitude) or pd.isna(longitude): +# st.warning(f"Skipping location {idx} with missing latitude or longitude") +# continue - location_name = row.get('name', f"Location_{idx}") +# location_name = row.get('name', f"Location_{idx}") - # Define the region of interest based on kernel size - if kernel_size == "3x3 Kernel": - buffer_size = 45 # 90m x 90m - roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds() - elif kernel_size == "5x5 Kernel": - buffer_size = 75 # 150m x 150m - roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds() - else: # Point - roi = ee.Geometry.Point([longitude, latitude]) +# # Define the region of interest based on kernel size +# if kernel_size == "3x3 Kernel": +# buffer_size = 45 # 90m x 90m +# roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds() +# elif kernel_size == "5x5 Kernel": +# buffer_size = 75 # 150m x 150m +# roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds() +# else: # Point +# roi = ee.Geometry.Point([longitude, latitude]) - collection = ee.ImageCollection(dataset_id) \ - .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \ - .filterBounds(roi) +# collection = ee.ImageCollection(dataset_id) \ +# .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \ +# .filterBounds(roi) - # Use custom aggregation for "Custom" period - if aggregation_period.lower().startswith("custom"): - collection = aggregate_data_custom(collection, start_date_str, end_date_str) - elif aggregation_period.lower() == 'weekly': - collection = aggregate_data_weekly(collection) - elif aggregation_period.lower() == 'monthly': - collection = aggregate_data_monthly(collection, start_date_str, end_date_str) - elif aggregation_period.lower() == 'yearly': - collection = aggregate_data_yearly(collection) +# # Use custom aggregation for "Custom" period +# if aggregation_period.lower().startswith("custom"): +# collection = aggregate_data_custom(collection, start_date_str, end_date_str) +# elif aggregation_period.lower() == 'weekly': +# collection = aggregate_data_weekly(collection) +# elif aggregation_period.lower() == 'monthly': +# collection = aggregate_data_monthly(collection, start_date_str, end_date_str) +# elif aggregation_period.lower() == 'yearly': +# collection = aggregate_data_yearly(collection) - image_list = collection.toList(collection.size()) - processed_weeks = set() - for i in range(image_list.size().getInfo()): - image = ee.Image(image_list.get(i)) - - if aggregation_period.lower().startswith("custom"): - timestamp = ee.Date(image.get('system:time_start')) - period_label = 'Date' - date = timestamp.format('YYYY-MM-dd').getInfo() - elif aggregation_period.lower() == 'weekly': - timestamp = image.get('week_start') - period_label = 'Week' - date = ee.String(timestamp).getInfo() - if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or - pd.to_datetime(date) > pd.to_datetime(end_date_str) or - date in processed_weeks): - continue - processed_weeks.add(date) - elif aggregation_period.lower() == 'monthly': - timestamp = image.get('month') - period_label = 'Month' - date = ee.Date(timestamp).format('YYYY-MM').getInfo() - elif aggregation_period.lower() == 'yearly': - timestamp = image.get('year') - period_label = 'Year' - date = ee.Date(timestamp).format('YYYY').getInfo() +# image_list = collection.toList(collection.size()) +# processed_weeks = set() +# for i in range(image_list.size().getInfo()): +# image = ee.Image(image_list.get(i)) - index_image = calculate_index_for_period(image, roi, selected_bands, custom_formula, reducer_choice) +# if aggregation_period.lower().startswith("custom"): +# timestamp = ee.Date(image.get('system:time_start')) +# period_label = 'Date' +# date = timestamp.format('YYYY-MM-dd').getInfo() +# elif aggregation_period.lower() == 'weekly': +# timestamp = image.get('week_start') +# period_label = 'Week' +# date = ee.String(timestamp).getInfo() +# if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or +# pd.to_datetime(date) > pd.to_datetime(end_date_str) or +# date in processed_weeks): +# continue +# processed_weeks.add(date) +# elif aggregation_period.lower() == 'monthly': +# timestamp = image.get('month') +# period_label = 'Month' +# date = ee.Date(timestamp).format('YYYY-MM').getInfo() +# elif aggregation_period.lower() == 'yearly': +# timestamp = image.get('year') +# period_label = 'Year' +# date = ee.Date(timestamp).format('YYYY').getInfo() - try: - index_value = index_image.reduceRegion( - reducer=get_reducer(reducer_choice), - geometry=roi, - scale=30 - ).get('custom_result') - - calculated_value = index_value.getInfo() - - if isinstance(calculated_value, (int, float)): - aggregated_results.append({ - 'Location Name': location_name, - 'Latitude': latitude, - 'Longitude': longitude, - period_label: date, - 'Start Date': start_date_str, - 'End Date': end_date_str, - 'Calculated Value': calculated_value - }) - else: - st.warning(f"Skipping invalid value for {location_name} on {date}") - except Exception as e: - st.error(f"Error retrieving value for {location_name}: {e}") +# index_image = calculate_index_for_period(image, roi, selected_bands, custom_formula, reducer_choice) + +# try: +# index_value = index_image.reduceRegion( +# reducer=get_reducer(reducer_choice), +# geometry=roi, +# scale=30 +# ).get('custom_result') + +# calculated_value = index_value.getInfo() + +# if isinstance(calculated_value, (int, float)): +# aggregated_results.append({ +# 'Location Name': location_name, +# 'Latitude': latitude, +# 'Longitude': longitude, +# period_label: date, +# 'Start Date': start_date_str, +# 'End Date': end_date_str, +# 'Calculated Value': calculated_value +# }) +# else: +# st.warning(f"Skipping invalid value for {location_name} on {date}") +# except Exception as e: +# st.error(f"Error retrieving value for {location_name}: {e}") - progress_percentage = (idx + 1) / total_steps - progress_bar.progress(progress_percentage) - progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%") +# progress_percentage = (idx + 1) / total_steps +# progress_bar.progress(progress_percentage) +# progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%") - elif shape_type.lower() == "polygon": - for idx, row in locations_df.iterrows(): - polygon_name = row.get('name', f"Polygon_{idx}") - polygon_geometry = row.get('geometry') - location_name = polygon_name +# elif shape_type.lower() == "polygon": +# for idx, row in locations_df.iterrows(): +# polygon_name = row.get('name', f"Polygon_{idx}") +# polygon_geometry = row.get('geometry') +# location_name = polygon_name - try: - roi = convert_to_ee_geometry(polygon_geometry) - if not include_boundary: - roi = roi.buffer(-30).bounds() - except ValueError as e: - st.warning(f"Skipping invalid polygon {polygon_name}: {e}") - continue +# try: +# roi = convert_to_ee_geometry(polygon_geometry) +# if not include_boundary: +# roi = roi.buffer(-30).bounds() +# except ValueError as e: +# st.warning(f"Skipping invalid polygon {polygon_name}: {e}") +# continue - collection = ee.ImageCollection(dataset_id) \ - .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \ - .filterBounds(roi) +# collection = ee.ImageCollection(dataset_id) \ +# .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \ +# .filterBounds(roi) - # Use custom aggregation for "Custom" period - if aggregation_period.lower().startswith("custom"): - collection = aggregate_data_custom(collection, start_date_str, end_date_str) - elif aggregation_period.lower() == 'weekly': - collection = aggregate_data_weekly(collection) - elif aggregation_period.lower() == 'monthly': - collection = aggregate_data_monthly(collection, start_date_str, end_date_str) - elif aggregation_period.lower() == 'yearly': - collection = aggregate_data_yearly(collection) +# # Use custom aggregation for "Custom" period +# if aggregation_period.lower().startswith("custom"): +# collection = aggregate_data_custom(collection, start_date_str, end_date_str) +# elif aggregation_period.lower() == 'weekly': +# collection = aggregate_data_weekly(collection) +# elif aggregation_period.lower() == 'monthly': +# collection = aggregate_data_monthly(collection, start_date_str, end_date_str) +# elif aggregation_period.lower() == 'yearly': +# collection = aggregate_data_yearly(collection) - image_list = collection.toList(collection.size()) - processed_weeks = set() - for i in range(image_list.size().getInfo()): - image = ee.Image(image_list.get(i)) +# image_list = collection.toList(collection.size()) +# processed_weeks = set() +# for i in range(image_list.size().getInfo()): +# image = ee.Image(image_list.get(i)) - if aggregation_period.lower().startswith("custom"): - timestamp = ee.Date(image.get('system:time_start')) - period_label = 'Date' - date = timestamp.format('YYYY-MM-dd').getInfo() - elif aggregation_period.lower() == 'weekly': - timestamp = image.get('week_start') - period_label = 'Week' - date = ee.String(timestamp).getInfo() - if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or - pd.to_datetime(date) > pd.to_datetime(end_date_str) or - date in processed_weeks): - continue - processed_weeks.add(date) - elif aggregation_period.lower() == 'monthly': - timestamp = image.get('month') - period_label = 'Month' - date = ee.Date(timestamp).format('YYYY-MM').getInfo() - elif aggregation_period.lower() == 'yearly': - timestamp = image.get('year') - period_label = 'Year' - date = ee.Date(timestamp).format('YYYY').getInfo() +# if aggregation_period.lower().startswith("custom"): +# timestamp = ee.Date(image.get('system:time_start')) +# period_label = 'Date' +# date = timestamp.format('YYYY-MM-dd').getInfo() +# elif aggregation_period.lower() == 'weekly': +# timestamp = image.get('week_start') +# period_label = 'Week' +# date = ee.String(timestamp).getInfo() +# if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or +# pd.to_datetime(date) > pd.to_datetime(end_date_str) or +# date in processed_weeks): +# continue +# processed_weeks.add(date) +# elif aggregation_period.lower() == 'monthly': +# timestamp = image.get('month') +# period_label = 'Month' +# date = ee.Date(timestamp).format('YYYY-MM').getInfo() +# elif aggregation_period.lower() == 'yearly': +# timestamp = image.get('year') +# period_label = 'Year' +# date = ee.Date(timestamp).format('YYYY').getInfo() - index_image = calculate_index_for_period(image, roi, selected_bands, custom_formula, reducer_choice) +# index_image = calculate_index_for_period(image, roi, selected_bands, custom_formula, reducer_choice) - try: - index_value = index_image.reduceRegion( - reducer=get_reducer(reducer_choice), - geometry=roi, - scale=30 - ).get('custom_result') +# try: +# index_value = index_image.reduceRegion( +# reducer=get_reducer(reducer_choice), +# geometry=roi, +# scale=30 +# ).get('custom_result') - calculated_value = index_value.getInfo() +# calculated_value = index_value.getInfo() - if isinstance(calculated_value, (int, float)): - aggregated_results.append({ - 'Location Name': location_name, - period_label: date, - 'Start Date': start_date_str, - 'End Date': end_date_str, - 'Calculated Value': calculated_value - }) - else: - st.warning(f"Skipping invalid value for {location_name} on {date}") - except Exception as e: - st.error(f"Error retrieving value for {location_name}: {e}") +# if isinstance(calculated_value, (int, float)): +# aggregated_results.append({ +# 'Location Name': location_name, +# period_label: date, +# 'Start Date': start_date_str, +# 'End Date': end_date_str, +# 'Calculated Value': calculated_value +# }) +# else: +# st.warning(f"Skipping invalid value for {location_name} on {date}") +# except Exception as e: +# st.error(f"Error retrieving value for {location_name}: {e}") - progress_percentage = (idx + 1) / total_steps - progress_bar.progress(progress_percentage) - progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%") +# progress_percentage = (idx + 1) / total_steps +# progress_bar.progress(progress_percentage) +# progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%") - if aggregated_results: - result_df = pd.DataFrame(aggregated_results) - if aggregation_period.lower().startswith("custom"): - # For Custom, return all results without further aggregation - return result_df.to_dict(orient='records') - else: - # For Weekly, Monthly, Yearly, aggregate as before - agg_dict = { - 'Start Date': 'first', - 'End Date': 'first', - 'Calculated Value': 'mean' - } - if shape_type.lower() == 'point': - agg_dict['Latitude'] = 'first' - agg_dict['Longitude'] = 'first' - aggregated_output = result_df.groupby('Location Name').agg(agg_dict).reset_index() - aggregated_output.rename(columns={'Calculated Value': 'Aggregated Value'}, inplace=True) - return aggregated_output.to_dict(orient='records') - return [] +# if aggregated_results: +# result_df = pd.DataFrame(aggregated_results) +# if aggregation_period.lower().startswith("custom"): +# # For Custom, return all results without further aggregation +# return result_df.to_dict(orient='records') +# else: +# # For Weekly, Monthly, Yearly, aggregate as before +# agg_dict = { +# 'Start Date': 'first', +# 'End Date': 'first', +# 'Calculated Value': 'mean' +# } +# if shape_type.lower() == 'point': +# agg_dict['Latitude'] = 'first' +# agg_dict['Longitude'] = 'first' +# aggregated_output = result_df.groupby('Location Name').agg(agg_dict).reset_index() +# aggregated_output.rename(columns={'Calculated Value': 'Aggregated Value'}, inplace=True) +# return aggregated_output.to_dict(orient='records') +# return [] -# Button to trigger calculation -if st.button("Calculate"): - if file_upload is not None: - if shape_type.lower() in ["point", "polygon"]: - results = process_aggregation( - locations_df, - start_date_str, - end_date_str, - dataset_id, - selected_bands, - reducer_choice, - shape_type, - aggregation_period, - custom_formula, - kernel_size=kernel_size, - include_boundary=include_boundary - ) - if results: - result_df = pd.DataFrame(results) - st.write(f"Processed Results Table ({aggregation_period}):") - st.dataframe(result_df) - filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y/%m/%d')}_{end_date.strftime('%Y/%m/%d')}_{aggregation_period.lower().replace(' ', '_')}.csv" - st.download_button( - label="Download results as CSV", - data=result_df.to_csv(index=False).encode('utf-8'), - file_name=filename, - mime='text/csv' - ) - st.spinner('') - st.success('Processing complete!') - else: - st.warning("No results were generated.") - else: - st.warning("Please upload a file.") \ No newline at end of file +# # Button to trigger calculation +# if st.button("Calculate"): +# if file_upload is not None: +# if shape_type.lower() in ["point", "polygon"]: +# results = process_aggregation( +# locations_df, +# start_date_str, +# end_date_str, +# dataset_id, +# selected_bands, +# reducer_choice, +# shape_type, +# aggregation_period, +# custom_formula, +# kernel_size=kernel_size, +# include_boundary=include_boundary +# ) +# if results: +# result_df = pd.DataFrame(results) +# st.write(f"Processed Results Table ({aggregation_period}):") +# st.dataframe(result_df) +# filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y/%m/%d')}_{end_date.strftime('%Y/%m/%d')}_{aggregation_period.lower().replace(' ', '_')}.csv" +# st.download_button( +# label="Download results as CSV", +# data=result_df.to_csv(index=False).encode('utf-8'), +# file_name=filename, +# mime='text/csv' +# ) +# st.spinner('') +# st.success('Processing complete!') +# else: +# st.warning("No results were generated.") +# else: +# st.warning("Please upload a file.") \ No newline at end of file