YashMK89 commited on
Commit
a957113
·
verified ·
1 Parent(s): 1703ab5

update app.py

Browse files
Files changed (1) hide show
  1. app.py +81 -71
app.py CHANGED
@@ -115,8 +115,6 @@ if 'last_params' not in st.session_state:
115
  st.session_state.last_params = {}
116
  if 'map_data' not in st.session_state:
117
  st.session_state.map_data = None # Initialize map_data
118
- if 'image_collection' not in st.session_state:
119
- st.session_state.image_collection = None # Initialize image collection storage
120
 
121
  # Function to check if parameters have changed
122
  def parameters_changed():
@@ -128,10 +126,9 @@ def parameters_changed():
128
  st.session_state.last_params.get('end_date_str') != end_date_str
129
  )
130
 
131
- # If parameters have changed, reset the results and clear the image collection from session state
132
  if parameters_changed():
133
  st.session_state.results = [] # Clear the previous results
134
- st.session_state.image_collection = None # Clear the image collection
135
  # Update the last parameters to the current ones
136
  st.session_state.last_params = {
137
  'main_selection': main_selection,
@@ -228,40 +225,37 @@ if file_upload:
228
 
229
  m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
230
 
231
- st.write(m)
 
 
232
 
233
- # Perform the calculation for each point in the DataFrame
234
- for idx, row in locations_df.iterrows():
235
- latitude = row['latitude']
236
- longitude = row['longitude']
237
- location_name = row.get('name', f"Location_{idx}")
238
-
239
- # Skip processing if latitude or longitude is NaN
240
- if pd.isna(latitude) or pd.isna(longitude):
241
- continue # Skip this row and move to the next one
242
 
243
- # Define the region of interest (ROI) and create a buffer around the point
244
- roi = ee.Geometry.Point([longitude, latitude]).buffer(1000) # 1 km buffer around the point
 
 
 
245
 
246
- # Check if the image collection is already in session state, else load it
247
- if st.session_state.image_collection is None:
248
- # Load Sentinel-2 image collection
249
- collection = ee.ImageCollection(sub_options[sub_selection]) \
250
- .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
251
- .filterBounds(roi)
252
 
253
- # Check if the collection has images for the selected date range
254
- image_count = collection.size().getInfo()
255
- if image_count == 0:
256
- st.warning(f"No images found for {location_name}.")
257
- else:
258
- st.write(f"Found {image_count} images for {location_name}.")
259
- st.session_state.image_collection = collection # Store the collection in session state
260
 
261
- else:
262
- collection = st.session_state.image_collection # Use the cached collection
 
 
263
 
264
- # Get the first image from the collection
 
 
 
 
 
265
  image = collection.first()
266
 
267
  # Perform the calculation based on user selection
@@ -290,42 +284,58 @@ if file_upload:
290
  'Calculated Value': calculated_value
291
  })
292
 
293
- # Sanitize the location name for use in the export task
294
- sanitized_location_name = sanitize_description(location_name)
295
-
296
- # Now allow user to download the image
297
- st.write(f"Click below to download the image for {sanitized_location_name}:")
298
-
299
- # Export image as GeoTIFF
300
- export_image = image.clip(roi) # Clip the image to the region of interest (ROI)
301
- export_task = ee.batch.Export.image.toDrive(
302
- image=export_image,
303
- description=sanitized_location_name,
304
- folder='Sentinel_Images',
305
- fileNamePrefix=f'{sanitized_location_name}_image',
306
- region=roi,
307
- scale=30,
308
- fileFormat='GeoTIFF',
309
- crs='EPSG:4326'
310
- )
311
- export_task.start()
312
-
313
- # Show export status
314
- st.info(f"Exporting image for {sanitized_location_name}. This might take some time...")
315
-
316
- # Poll for the task status (to check if export is finished)
317
- while export_task.active():
318
- time.sleep(5)
319
- st.write("Export in progress...")
320
-
321
- st.write(f"Export complete! The image is ready for download.")
322
-
323
- # Generate a link to the exported image in Google Drive
324
- # Replace 'your_google_drive_folder_link' with the actual folder ID in your Drive
325
- st.write(f"Click below to download the GeoTIFF image for {sanitized_location_name}:")
326
- st.download_button(
327
- label=f"Download {sanitized_location_name} Image",
328
- data=export_image.getDownloadURL(),
329
- file_name=f'{sanitized_location_name}_image.tif'
330
- )
331
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115
  st.session_state.last_params = {}
116
  if 'map_data' not in st.session_state:
117
  st.session_state.map_data = None # Initialize map_data
 
 
118
 
119
  # Function to check if parameters have changed
120
  def parameters_changed():
 
126
  st.session_state.last_params.get('end_date_str') != end_date_str
127
  )
128
 
129
+ # If parameters have changed, reset the results
130
  if parameters_changed():
131
  st.session_state.results = [] # Clear the previous results
 
132
  # Update the last parameters to the current ones
133
  st.session_state.last_params = {
134
  'main_selection': main_selection,
 
225
 
226
  m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
227
 
228
+ # Display map
229
+ st.write("Map of Uploaded Points:")
230
+ m.to_streamlit()
231
 
232
+ # Store the map in session_state
233
+ st.session_state.map_data = m
 
 
 
 
 
 
 
234
 
235
+ # Process each point for index calculation
236
+ for idx, row in locations_df.iterrows():
237
+ latitude = row['latitude']
238
+ longitude = row['longitude']
239
+ location_name = row.get('name', f"Location_{idx}")
240
 
241
+ # Skip processing if latitude or longitude is NaN
242
+ if pd.isna(latitude) or pd.isna(longitude):
243
+ continue # Skip this row and move to the next one
 
 
 
244
 
245
+ # Define the region of interest (ROI)
246
+ roi = ee.Geometry.Point([longitude, latitude])
 
 
 
 
 
247
 
248
+ # Load Sentinel-2 image collection
249
+ collection = ee.ImageCollection(sub_options[sub_selection]) \
250
+ .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
251
+ .filterBounds(roi)
252
 
253
+ # Check if the collection has images for the selected date range
254
+ image_count = collection.size().getInfo()
255
+ if image_count == 0:
256
+ st.warning(f"No images found for {location_name}.")
257
+ else:
258
+ st.write(f"Found {image_count} images for {location_name}.")
259
  image = collection.first()
260
 
261
  # Perform the calculation based on user selection
 
284
  'Calculated Value': calculated_value
285
  })
286
 
287
+ # Sanitize the location name for use in the export task
288
+ sanitized_location_name = sanitize_description(location_name)
289
+
290
+ # Now allow user to download the image
291
+ st.write(f"Click below to download the image for {sanitized_location_name}:")
292
+
293
+ # Export image as GeoTIFF
294
+ export_image = image.clip(roi) # Clip the image to the region of interest (ROI)
295
+ export_task = ee.batch.Export.image.toDrive(
296
+ image=export_image,
297
+ description=sanitized_location_name,
298
+ folder='Sentinel_Images',
299
+ fileNamePrefix=f'{sanitized_location_name}_image',
300
+ region=roi,
301
+ scale=30,
302
+ fileFormat='GeoTIFF',
303
+ crs='EPSG:4326'
304
+ )
305
+ export_task.start()
306
+
307
+ # Show export status
308
+ st.info(f"Exporting image for {sanitized_location_name}. This might take some time...")
309
+
310
+ # Poll for the task status (to check if export is finished)
311
+ while export_task.active():
312
+ time.sleep(5)
313
+ st.write("Export in progress...")
314
+
315
+ st.write(f"Export complete! The image is ready for download.")
316
+
317
+ # Generate a link to the exported image in Google Drive
318
+ # Replace 'your_google_drive_folder_link' with the actual folder ID in your Drive
319
+ st.write(f"Click below to download the GeoTIFF image for {sanitized_location_name}:")
320
+ st.download_button(
321
+ label=f"Download {sanitized_location_name} Image",
322
+ data=export_image.getDownloadURL(),
323
+ file_name=f'{sanitized_location_name}_image.tif'
324
+ )
325
+
326
+ # After processing, show the results
327
+ if st.session_state.results:
328
+ # Convert the results to a DataFrame for better visualization
329
+ result_df = pd.DataFrame(st.session_state.results)
330
+
331
+ # Show the results in a table format
332
+ st.write("Processed Results Table:")
333
+ st.dataframe(result_df[['Location Name', 'Latitude', 'Longitude', 'Calculated Value']])
334
+
335
+ # Allow downloading of the results as CSV
336
+ st.download_button(
337
+ label="Download results as CSV",
338
+ data=result_df.to_csv(index=False).encode('utf-8'),
339
+ file_name="calculated_results.csv",
340
+ mime='text/csv'
341
+ )