Spaces:
Sleeping
Sleeping
update app.py
Browse files
app.py
CHANGED
@@ -1,803 +1,3 @@
|
|
1 |
-
# import streamlit as st
|
2 |
-
# import json
|
3 |
-
# import ee
|
4 |
-
# import os
|
5 |
-
# import pandas as pd
|
6 |
-
# import geopandas as gpd
|
7 |
-
# from datetime import datetime
|
8 |
-
# import leafmap.foliumap as leafmap
|
9 |
-
# import re
|
10 |
-
# from shapely.geometry import base
|
11 |
-
# from lxml import etree
|
12 |
-
# from xml.etree import ElementTree as ET
|
13 |
-
|
14 |
-
# # Set up the page layout
|
15 |
-
# st.set_page_config(layout="wide")
|
16 |
-
|
17 |
-
# # Custom button styling
|
18 |
-
# m = st.markdown(
|
19 |
-
# """
|
20 |
-
# <style>
|
21 |
-
# div.stButton > button:first-child {
|
22 |
-
# background-color: #006400;
|
23 |
-
# color:#ffffff;
|
24 |
-
# }
|
25 |
-
# </style>""",
|
26 |
-
# unsafe_allow_html=True,
|
27 |
-
# )
|
28 |
-
|
29 |
-
# # Logo
|
30 |
-
# st.write(
|
31 |
-
# f"""
|
32 |
-
# <div style="display: flex; justify-content: space-between; align-items: center;">
|
33 |
-
# <img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/ISRO_Logo.png" style="width: 20%; margin-right: auto;">
|
34 |
-
# <img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/SAC_Logo.png" style="width: 20%; margin-left: auto;">
|
35 |
-
# </div>
|
36 |
-
# """,
|
37 |
-
# unsafe_allow_html=True,
|
38 |
-
# )
|
39 |
-
|
40 |
-
# # Title
|
41 |
-
# st.markdown(
|
42 |
-
# f"""
|
43 |
-
# <h1 style="text-align: center;">Precision Analysis for Vegetation, Water, and Air Quality</h1>
|
44 |
-
# """,
|
45 |
-
# unsafe_allow_html=True,
|
46 |
-
# )
|
47 |
-
# st.write("<h2><div style='text-align: center;'>User Inputs</div></h2>", unsafe_allow_html=True)
|
48 |
-
|
49 |
-
# # Authenticate and initialize Earth Engine
|
50 |
-
# earthengine_credentials = os.environ.get("EE_Authentication")
|
51 |
-
|
52 |
-
# # Initialize Earth Engine with secret credentials
|
53 |
-
# os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
|
54 |
-
# with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
|
55 |
-
# f.write(earthengine_credentials)
|
56 |
-
|
57 |
-
# ee.Initialize(project='ee-yashsacisro24')
|
58 |
-
|
59 |
-
# # Load the Sentinel dataset options from JSON file
|
60 |
-
# with open("sentinel_datasets.json") as f:
|
61 |
-
# data = json.load(f)
|
62 |
-
|
63 |
-
# # Display the title for the Streamlit app
|
64 |
-
# st.title("Sentinel Dataset")
|
65 |
-
|
66 |
-
# # Select dataset category (main selection)
|
67 |
-
# main_selection = st.selectbox("Select Sentinel Dataset Category", list(data.keys()))
|
68 |
-
|
69 |
-
# # If a category is selected, display the sub-options (specific datasets)
|
70 |
-
# if main_selection:
|
71 |
-
# sub_options = data[main_selection]["sub_options"]
|
72 |
-
# sub_selection = st.selectbox("Select Specific Dataset ID", list(sub_options.keys()))
|
73 |
-
|
74 |
-
# # Display the selected dataset ID based on user input
|
75 |
-
# if sub_selection:
|
76 |
-
# st.write(f"You selected: {main_selection} -> {sub_selection}")
|
77 |
-
# st.write(f"Dataset ID: {sub_options[sub_selection]}")
|
78 |
-
|
79 |
-
# # Fetch the correct dataset ID from the sub-selection
|
80 |
-
# dataset_id = sub_options[sub_selection]
|
81 |
-
|
82 |
-
# # Earth Engine Index Calculator Section
|
83 |
-
# st.header("Earth Engine Index Calculator")
|
84 |
-
|
85 |
-
# index_choice = st.selectbox("Select an Index or Enter Custom Formula", ['NDVI', 'NDWI', 'Average NO₂', 'Custom Formula'])
|
86 |
-
|
87 |
-
# # Initialize custom_formula variable
|
88 |
-
# custom_formula = ""
|
89 |
-
|
90 |
-
# # Display corresponding formula based on the index selected (case-insensitive)
|
91 |
-
# if index_choice.lower() == 'ndvi':
|
92 |
-
# st.write("Formula for NDVI: NDVI = (B8 - B4) / (B8 + B4)")
|
93 |
-
# elif index_choice.lower() == 'ndwi':
|
94 |
-
# st.write("Formula for NDWI: NDWI = (B3 - B8) / (B3 + B8)")
|
95 |
-
# elif index_choice.lower() == 'average no₂':
|
96 |
-
# st.write("Formula for Average NO₂: Average NO₂ = Mean(NO2 band)")
|
97 |
-
# elif index_choice.lower() == 'custom formula':
|
98 |
-
# custom_formula = st.text_input("Enter Custom Formula (e.g., B5,B4 for two bands or B3 for one band)")
|
99 |
-
# # Check if custom formula is empty and show warning
|
100 |
-
# if not custom_formula:
|
101 |
-
# st.warning("Please enter a custom formula before proceeding.")
|
102 |
-
# else:
|
103 |
-
# # Check if the input contains a comma (indicating two bands)
|
104 |
-
# if ',' in custom_formula:
|
105 |
-
# # Split the input into two bands and strip whitespace
|
106 |
-
# band1, band2 = [b.strip() for b in custom_formula.split(',', 1)]
|
107 |
-
# st.write(f"Custom Formula: ({band1} - {band2}) / ({band1} + {band2})")
|
108 |
-
# else:
|
109 |
-
# # Single band case
|
110 |
-
# band = custom_formula.strip()
|
111 |
-
# st.write(f"Custom Formula: {band}")
|
112 |
-
|
113 |
-
# # Function to get the corresponding reducer based on user input
|
114 |
-
# def get_reducer(reducer_name):
|
115 |
-
# """
|
116 |
-
# Map user-friendly reducer names to Earth Engine reducer objects.
|
117 |
-
# """
|
118 |
-
# reducers = {
|
119 |
-
# 'mean': ee.Reducer.mean(),
|
120 |
-
# 'sum': ee.Reducer.sum(),
|
121 |
-
# 'median': ee.Reducer.median(),
|
122 |
-
# 'min': ee.Reducer.min(),
|
123 |
-
# 'max': ee.Reducer.max(),
|
124 |
-
# 'count': ee.Reducer.count(),
|
125 |
-
# }
|
126 |
-
|
127 |
-
# # Default to 'mean' if the reducer_name is not recognized
|
128 |
-
# return reducers.get(reducer_name.lower(), ee.Reducer.mean())
|
129 |
-
|
130 |
-
# # Streamlit selectbox for reducer choice
|
131 |
-
# reducer_choice = st.selectbox(
|
132 |
-
# "Select Reducer",
|
133 |
-
# ['mean', 'sum', 'median', 'min', 'max', 'count'],
|
134 |
-
# index=0 # Default to 'mean'
|
135 |
-
# )
|
136 |
-
|
137 |
-
# def convert_to_ee_geometry(geometry):
|
138 |
-
# # Handle Shapely geometry
|
139 |
-
# if isinstance(geometry, base.BaseGeometry):
|
140 |
-
# if geometry.is_valid:
|
141 |
-
# geojson = geometry.__geo_interface__
|
142 |
-
# print("Shapely GeoJSON:", geojson) # Debugging: Inspect the GeoJSON structure
|
143 |
-
# return ee.Geometry(geojson)
|
144 |
-
# else:
|
145 |
-
# raise ValueError("Invalid geometry: The polygon geometry is not valid.")
|
146 |
-
|
147 |
-
# # Handle GeoJSON input (string or dictionary)
|
148 |
-
# elif isinstance(geometry, dict) or isinstance(geometry, str):
|
149 |
-
# try:
|
150 |
-
# if isinstance(geometry, str):
|
151 |
-
# geometry = json.loads(geometry)
|
152 |
-
# if 'type' in geometry and 'coordinates' in geometry:
|
153 |
-
# print("GeoJSON Geometry:", geometry) # Debugging: Inspect the GeoJSON structure
|
154 |
-
# return ee.Geometry(geometry)
|
155 |
-
# else:
|
156 |
-
# raise ValueError("GeoJSON format is invalid.")
|
157 |
-
# except Exception as e:
|
158 |
-
# raise ValueError(f"Error parsing GeoJSON: {e}")
|
159 |
-
|
160 |
-
# # Handle KML input (string or file path)
|
161 |
-
# elif isinstance(geometry, str) and geometry.lower().endswith(".kml"):
|
162 |
-
# try:
|
163 |
-
# # Parse the KML file
|
164 |
-
# tree = ET.parse(geometry)
|
165 |
-
# kml_root = tree.getroot()
|
166 |
-
|
167 |
-
# # Extract coordinates from KML geometry (assuming it's a Polygon or MultiPolygon)
|
168 |
-
# # KML coordinates are usually within the <coordinates> tag
|
169 |
-
# kml_namespace = {'kml': 'http://www.opengis.net/kml/2.2'}
|
170 |
-
# coordinates = kml_root.findall(".//kml:coordinates", kml_namespace)
|
171 |
-
|
172 |
-
# if coordinates:
|
173 |
-
# # Extract and format coordinates
|
174 |
-
# coords_text = coordinates[0].text.strip()
|
175 |
-
# coords = coords_text.split()
|
176 |
-
# # Convert KML coordinates (comma-separated) into a list of tuples
|
177 |
-
# coords = [tuple(map(float, coord.split(','))) for coord in coords]
|
178 |
-
# geojson = {
|
179 |
-
# "type": "Polygon", # Make sure the GeoJSON type is Polygon
|
180 |
-
# "coordinates": [coords] # Wrap the coordinates in a list (required by GeoJSON format)
|
181 |
-
# }
|
182 |
-
|
183 |
-
# # Debugging: Inspect the KML-to-GeoJSON structure
|
184 |
-
# print("KML GeoJSON:", geojson)
|
185 |
-
|
186 |
-
# return ee.Geometry(geojson)
|
187 |
-
# else:
|
188 |
-
# raise ValueError("KML does not contain valid coordinates.")
|
189 |
-
# except Exception as e:
|
190 |
-
# raise ValueError(f"Error parsing KML: {e}")
|
191 |
-
|
192 |
-
# else:
|
193 |
-
# raise ValueError("Unsupported geometry input type. Supported types are Shapely, GeoJSON, and KML.")
|
194 |
-
|
195 |
-
# # Function to read points from CSV
|
196 |
-
# def read_csv(file_path):
|
197 |
-
# df = pd.read_csv(file_path)
|
198 |
-
# return df
|
199 |
-
|
200 |
-
# # Function to read points from GeoJSON
|
201 |
-
# def read_geojson(file_path):
|
202 |
-
# gdf = gpd.read_file(file_path)
|
203 |
-
# return gdf
|
204 |
-
|
205 |
-
# # Function to read points from KML
|
206 |
-
# def read_kml(file_path):
|
207 |
-
# gdf = gpd.read_file(file_path, driver='KML')
|
208 |
-
# return gdf
|
209 |
-
|
210 |
-
|
211 |
-
# # Date Input for Start and End Dates
|
212 |
-
# start_date = st.date_input("Start Date", value=pd.to_datetime('2024-11-01'))
|
213 |
-
# end_date = st.date_input("End Date", value=pd.to_datetime('2024-12-01'))
|
214 |
-
|
215 |
-
# # Convert start_date and end_date to string format for Earth Engine
|
216 |
-
# start_date_str = start_date.strftime('%Y-%m-%d')
|
217 |
-
# end_date_str = end_date.strftime('%Y-%m-%d')
|
218 |
-
|
219 |
-
# # Aggregation period selection
|
220 |
-
# aggregation_period = st.selectbox("Select Aggregation Period", ["Daily", "Weekly", "Monthly", "Yearly"], index=0)
|
221 |
-
|
222 |
-
# # Ask user whether they want to process 'Point' or 'Polygon' data (case-insensitive)
|
223 |
-
# shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"])
|
224 |
-
|
225 |
-
# # Ask user to upload a file based on shape type (case-insensitive)
|
226 |
-
# file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
|
227 |
-
|
228 |
-
# if file_upload is not None:
|
229 |
-
# # Read the user-uploaded file
|
230 |
-
# if shape_type.lower() == "point":
|
231 |
-
# # Handle different file types for Point data
|
232 |
-
# if file_upload.name.endswith('.csv'):
|
233 |
-
# locations_df = pd.read_csv(file_upload)
|
234 |
-
# elif file_upload.name.endswith('.geojson'):
|
235 |
-
# locations_df = gpd.read_file(file_upload)
|
236 |
-
# elif file_upload.name.endswith('.kml'):
|
237 |
-
# locations_df = gpd.read_file(file_upload)
|
238 |
-
# else:
|
239 |
-
# st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
|
240 |
-
# locations_df = pd.DataFrame()
|
241 |
-
|
242 |
-
# # Check if the file contains polygons when the user selected "Point"
|
243 |
-
# if 'geometry' in locations_df.columns:
|
244 |
-
# # Check if the geometry type is Polygon or MultiPolygon
|
245 |
-
# if locations_df.geometry.geom_type.isin(['Polygon', 'MultiPolygon']).any():
|
246 |
-
# st.warning("The uploaded file contains polygon data. Please select 'Polygon' for processing.")
|
247 |
-
# st.stop() # Stop further processing if polygons are detected
|
248 |
-
|
249 |
-
# # Processing the point data
|
250 |
-
# with st.spinner('Processing Map...'):
|
251 |
-
# if locations_df is not None and not locations_df.empty:
|
252 |
-
# # For GeoJSON data, the coordinates are in the geometry column
|
253 |
-
# if 'geometry' in locations_df.columns:
|
254 |
-
# # Extract latitude and longitude from the geometry column
|
255 |
-
# locations_df['latitude'] = locations_df['geometry'].y
|
256 |
-
# locations_df['longitude'] = locations_df['geometry'].x
|
257 |
-
|
258 |
-
# # Ensure the necessary columns exist in the dataframe
|
259 |
-
# if 'latitude' not in locations_df.columns or 'longitude' not in locations_df.columns:
|
260 |
-
# st.error("Uploaded file is missing required 'latitude' or 'longitude' columns.")
|
261 |
-
# else:
|
262 |
-
# # Display a preview of the points data
|
263 |
-
# st.write("Preview of the uploaded points data:")
|
264 |
-
# st.dataframe(locations_df.head())
|
265 |
-
|
266 |
-
# # Create a LeafMap object to display the points
|
267 |
-
# m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
|
268 |
-
|
269 |
-
# # Add points to the map using a loop
|
270 |
-
# for _, row in locations_df.iterrows():
|
271 |
-
# latitude = row['latitude']
|
272 |
-
# longitude = row['longitude']
|
273 |
-
|
274 |
-
# # Check if latitude or longitude are NaN and skip if they are
|
275 |
-
# if pd.isna(latitude) or pd.isna(longitude):
|
276 |
-
# continue # Skip this row and move to the next one
|
277 |
-
|
278 |
-
# m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
|
279 |
-
|
280 |
-
# # Display map
|
281 |
-
# st.write("Map of Uploaded Points:")
|
282 |
-
# m.to_streamlit()
|
283 |
-
|
284 |
-
# # Store the map in session_state
|
285 |
-
# st.session_state.map_data = m
|
286 |
-
|
287 |
-
# elif shape_type.lower() == "polygon":
|
288 |
-
# # Handle different file types for Polygon data:
|
289 |
-
# if file_upload.name.endswith('.csv'):
|
290 |
-
# locations_df = pd.read_csv(file_upload)
|
291 |
-
# elif file_upload.name.endswith('.geojson'):
|
292 |
-
# locations_df = gpd.read_file(file_upload)
|
293 |
-
# elif file_upload.name.endswith('.kml'):
|
294 |
-
# locations_df = gpd.read_file(file_upload)
|
295 |
-
# else:
|
296 |
-
# st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
|
297 |
-
# locations_df = pd.DataFrame()
|
298 |
-
|
299 |
-
# # Check if the file contains points when the user selected "Polygon"
|
300 |
-
# if 'geometry' in locations_df.columns:
|
301 |
-
# # Check if the geometry type is Point or MultiPoint
|
302 |
-
# if locations_df.geometry.geom_type.isin(['Point', 'MultiPoint']).any():
|
303 |
-
# st.warning("The uploaded file contains point data. Please select 'Point' for processing.")
|
304 |
-
# st.stop() # Stop further processing if point data is detected
|
305 |
-
|
306 |
-
# # Processing the polygon data
|
307 |
-
# with st.spinner('Processing Map...'):
|
308 |
-
# if locations_df is not None and not locations_df.empty:
|
309 |
-
# # Ensure the 'geometry' column exists in the dataframe
|
310 |
-
# if 'geometry' not in locations_df.columns:
|
311 |
-
# st.error("Uploaded file is missing required 'geometry' column.")
|
312 |
-
# else:
|
313 |
-
# # Display a preview of the polygons data
|
314 |
-
# st.write("Preview of the uploaded polygons data:")
|
315 |
-
# st.dataframe(locations_df.head())
|
316 |
-
|
317 |
-
# # Create a LeafMap object to display the polygons
|
318 |
-
# # Calculate the centroid of the polygons for the map center
|
319 |
-
# centroid_lat = locations_df.geometry.centroid.y.mean()
|
320 |
-
# centroid_lon = locations_df.geometry.centroid.x.mean()
|
321 |
-
|
322 |
-
# m = leafmap.Map(center=[centroid_lat, centroid_lon], zoom=10)
|
323 |
-
|
324 |
-
# # Add polygons to the map using a loop
|
325 |
-
# for _, row in locations_df.iterrows():
|
326 |
-
# polygon = row['geometry']
|
327 |
-
# if polygon.is_valid: # Check if polygon is valid
|
328 |
-
# # Create a GeoDataFrame for this polygon
|
329 |
-
# gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=locations_df.crs)
|
330 |
-
# m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
|
331 |
-
|
332 |
-
# # Display map
|
333 |
-
# st.write("Map of Uploaded Polygons:")
|
334 |
-
# m.to_streamlit()
|
335 |
-
|
336 |
-
# # Store the map in session_state
|
337 |
-
# st.session_state.map_data = m
|
338 |
-
|
339 |
-
# # Initialize session state for storing results if not already done
|
340 |
-
# if 'results' not in st.session_state:
|
341 |
-
# st.session_state.results = []
|
342 |
-
# if 'last_params' not in st.session_state:
|
343 |
-
# st.session_state.last_params = {}
|
344 |
-
# if 'map_data' not in st.session_state:
|
345 |
-
# st.session_state.map_data = None # Initialize map_data
|
346 |
-
|
347 |
-
# # Function to check if parameters have changed
|
348 |
-
# def parameters_changed():
|
349 |
-
# return (
|
350 |
-
# st.session_state.last_params.get('main_selection') != main_selection or
|
351 |
-
# st.session_state.last_params.get('dataset_id') != dataset_id or
|
352 |
-
# st.session_state.last_params.get('index_choice') != index_choice or
|
353 |
-
# st.session_state.last_params.get('start_date_str') != start_date_str or
|
354 |
-
# st.session_state.last_params.get('end_date_str') != end_date_str or
|
355 |
-
# st.session_state.last_params.get('shape_type') != shape_type or
|
356 |
-
# st.session_state.last_params.get('file_upload') != file_upload
|
357 |
-
# )
|
358 |
-
|
359 |
-
# # If parameters have changed, reset the results
|
360 |
-
# if parameters_changed():
|
361 |
-
# st.session_state.results = [] # Clear the previous results
|
362 |
-
# st.session_state.last_params = {
|
363 |
-
# 'main_selection': main_selection,
|
364 |
-
# 'dataset_id': dataset_id,
|
365 |
-
# 'index_choice': index_choice,
|
366 |
-
# 'start_date_str': start_date_str,
|
367 |
-
# 'end_date_str': end_date_str,
|
368 |
-
# 'shape_type': shape_type,
|
369 |
-
# 'file_upload': file_upload
|
370 |
-
# }
|
371 |
-
|
372 |
-
# # Function to calculate NDVI with the selected reducer
|
373 |
-
# def calculate_ndvi(image, geometry, reducer_choice):
|
374 |
-
# ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
|
375 |
-
# return ndvi
|
376 |
-
|
377 |
-
# # Function to calculate NDWI
|
378 |
-
# def calculate_ndwi(image, geometry, reducer_choice):
|
379 |
-
# ndwi = image.normalizedDifference(['B3', 'B8']).rename('NDWI')
|
380 |
-
# return ndwi
|
381 |
-
|
382 |
-
# def calculate_custom_formula(image, geometry, custom_formula, reducer_choice, scale=30):
|
383 |
-
# try:
|
384 |
-
# if "," in custom_formula:
|
385 |
-
# band1, band2 = [b.strip() for b in custom_formula.split(",")]
|
386 |
-
# band_names = image.bandNames().getInfo()
|
387 |
-
# if band1 not in band_names or band2 not in band_names:
|
388 |
-
# raise ValueError(f"One or both bands ({band1}, {band2}) do not exist in the image.")
|
389 |
-
# result = image.normalizedDifference([band1, band2]).rename('custom_formula')
|
390 |
-
# else:
|
391 |
-
# band = custom_formula.strip()
|
392 |
-
# band_names = image.bandNames().getInfo()
|
393 |
-
# if band not in band_names:
|
394 |
-
# raise ValueError(f"The band '{band}' does not exist in the image.")
|
395 |
-
# result = image.select(band).rename('custom_formula')
|
396 |
-
# return result
|
397 |
-
# except Exception as e:
|
398 |
-
# return ee.Image(0).rename('custom_formula').set('error', str(e))
|
399 |
-
|
400 |
-
# # Modify aggregation functions to return the correct time period and aggregated results
|
401 |
-
# def aggregate_data_daily(collection):
|
402 |
-
# # Extract day from the image date (using the exact date)
|
403 |
-
# collection = collection.map(lambda image: image.set('day', ee.Date(image.get('system:time_start')).format('YYYY-MM-dd')))
|
404 |
-
|
405 |
-
# # Group images by day (distinct days)
|
406 |
-
# grouped_by_day = collection.aggregate_array('day').distinct()
|
407 |
-
|
408 |
-
# def calculate_daily_mean(day):
|
409 |
-
# # Filter the collection by the specific day
|
410 |
-
# daily_collection = collection.filter(ee.Filter.eq('day', day))
|
411 |
-
# daily_mean = daily_collection.mean() # Calculate mean for the day
|
412 |
-
# return daily_mean.set('day', day)
|
413 |
-
|
414 |
-
# # Calculate the daily mean for each day
|
415 |
-
# daily_images = ee.List(grouped_by_day.map(calculate_daily_mean))
|
416 |
-
|
417 |
-
# return ee.ImageCollection(daily_images)
|
418 |
-
|
419 |
-
# def aggregate_data_weekly(collection):
|
420 |
-
# # Extract the start date of the week from the image date
|
421 |
-
# collection = collection.map(lambda image: image.set(
|
422 |
-
# 'week_start', ee.Date(image.get('system:time_start'))
|
423 |
-
# .advance(-ee.Date(image.get('system:time_start')).getRelative('day', 'week'), 'day')
|
424 |
-
# ))
|
425 |
-
# # Group images by week start date
|
426 |
-
# grouped_by_week = collection.aggregate_array('week_start').distinct()
|
427 |
-
|
428 |
-
# def calculate_weekly_mean(week_start):
|
429 |
-
# # Filter the collection by the specific week start date
|
430 |
-
# weekly_collection = collection.filter(ee.Filter.eq('week_start', week_start))
|
431 |
-
# weekly_mean = weekly_collection.mean() # Calculate mean for the week
|
432 |
-
# return weekly_mean.set('week_start', week_start)
|
433 |
-
|
434 |
-
# # Calculate the weekly mean for each week
|
435 |
-
# weekly_images = ee.List(grouped_by_week.map(calculate_weekly_mean))
|
436 |
-
# return ee.ImageCollection(weekly_images)
|
437 |
-
|
438 |
-
# def aggregate_data_monthly(collection, start_date, end_date):
|
439 |
-
# # Filter the collection for the specific date range
|
440 |
-
# collection = collection.filterDate(start_date, end_date)
|
441 |
-
|
442 |
-
# # Extract month and year from the image date
|
443 |
-
# collection = collection.map(lambda image: image.set('month', ee.Date(image.get('system:time_start')).format('YYYY-MM')))
|
444 |
-
|
445 |
-
# # Group images by month
|
446 |
-
# grouped_by_month = collection.aggregate_array('month').distinct()
|
447 |
-
|
448 |
-
# def calculate_monthly_mean(month):
|
449 |
-
# monthly_collection = collection.filter(ee.Filter.eq('month', month))
|
450 |
-
# monthly_mean = monthly_collection.mean()
|
451 |
-
# return monthly_mean.set('month', month)
|
452 |
-
|
453 |
-
# # Calculate the monthly mean for each month
|
454 |
-
# monthly_images = ee.List(grouped_by_month.map(calculate_monthly_mean))
|
455 |
-
|
456 |
-
# return ee.ImageCollection(monthly_images)
|
457 |
-
|
458 |
-
# def aggregate_data_yearly(collection):
|
459 |
-
# # Extract year from the image date
|
460 |
-
# collection = collection.map(lambda image: image.set('year', ee.Date(image.get('system:time_start')).format('YYYY')))
|
461 |
-
|
462 |
-
# # Group images by year
|
463 |
-
# grouped_by_year = collection.aggregate_array('year').distinct()
|
464 |
-
|
465 |
-
# def calculate_yearly_mean(year):
|
466 |
-
# yearly_collection = collection.filter(ee.Filter.eq('year', year))
|
467 |
-
# yearly_mean = yearly_collection.mean()
|
468 |
-
# return yearly_mean.set('year', year)
|
469 |
-
|
470 |
-
# # Calculate the yearly mean for each year
|
471 |
-
# yearly_images = ee.List(grouped_by_year.map(calculate_yearly_mean))
|
472 |
-
|
473 |
-
# return ee.ImageCollection(yearly_images)
|
474 |
-
|
475 |
-
# # Function to calculate index based on the selected choice
|
476 |
-
# def calculate_index_for_period(image, roi, index_choice, reducer_choice, custom_formula):
|
477 |
-
# if index_choice.lower() == 'ndvi':
|
478 |
-
# return calculate_ndvi(image, roi, reducer_choice)
|
479 |
-
# elif index_choice.lower() == 'ndwi':
|
480 |
-
# return calculate_ndwi(image, roi, reducer_choice)
|
481 |
-
# elif index_choice.lower() == 'average no₂':
|
482 |
-
# mean_no2 = image.select('NO2').mean().rename('Average NO₂')
|
483 |
-
# return mean_no2
|
484 |
-
# elif index_choice.lower() == 'custom formula':
|
485 |
-
# # Pass the custom formula here, not the index_choice
|
486 |
-
# return calculate_custom_formula(image, roi, custom_formula, reducer_choice)
|
487 |
-
# else:
|
488 |
-
# st.write("Please Select any one option...."+ index_choice.lower())
|
489 |
-
|
490 |
-
# def aggregate_data_weekly(collection):
|
491 |
-
# def set_week_start(image):
|
492 |
-
# # Get the image timestamp
|
493 |
-
# date = ee.Date(image.get('system:time_start'))
|
494 |
-
# # Calculate days since the start of the week (0 = Monday, 6 = Sunday)
|
495 |
-
# days_since_week_start = date.getRelative('day', 'week')
|
496 |
-
# # Convert to ee.Number and negate it to get the offset to the week start
|
497 |
-
# offset = ee.Number(days_since_week_start).multiply(-1)
|
498 |
-
# # Advance the date by the negative offset to get the week start
|
499 |
-
# week_start = date.advance(offset, 'day')
|
500 |
-
# return image.set('week_start', week_start.format('YYYY-MM-dd')) # Ensure string format
|
501 |
-
|
502 |
-
# # Apply the week start calculation to each image
|
503 |
-
# collection = collection.map(set_week_start)
|
504 |
-
|
505 |
-
# # Group images by week start date
|
506 |
-
# grouped_by_week = collection.aggregate_array('week_start').distinct()
|
507 |
-
|
508 |
-
# def calculate_weekly_mean(week_start):
|
509 |
-
# # Filter the collection by the specific week start date
|
510 |
-
# weekly_collection = collection.filter(ee.Filter.eq('week_start', week_start))
|
511 |
-
# weekly_mean = weekly_collection.mean() # Calculate mean for the week
|
512 |
-
# return weekly_mean.set('week_start', week_start)
|
513 |
-
|
514 |
-
# # Calculate the weekly mean for each week
|
515 |
-
# weekly_images = ee.List(grouped_by_week.map(calculate_weekly_mean))
|
516 |
-
# return ee.ImageCollection(weekly_images)
|
517 |
-
|
518 |
-
# def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id, index_choice, reducer_choice, shape_type, aggregation_period, custom_formula=""):
|
519 |
-
# aggregated_results = []
|
520 |
-
|
521 |
-
# if index_choice.lower() == 'custom_formula' and not custom_formula:
|
522 |
-
# st.error("Custom formula cannot be empty. Please provide a formula.")
|
523 |
-
# return aggregated_results
|
524 |
-
|
525 |
-
# total_steps = len(locations_df)
|
526 |
-
# progress_bar = st.progress(0)
|
527 |
-
# progress_text = st.empty()
|
528 |
-
|
529 |
-
# with st.spinner('Processing data...'):
|
530 |
-
# if shape_type.lower() == "point":
|
531 |
-
# for idx, row in locations_df.iterrows():
|
532 |
-
# latitude = row.get('latitude')
|
533 |
-
# longitude = row.get('longitude')
|
534 |
-
# if pd.isna(latitude) or pd.isna(longitude):
|
535 |
-
# st.warning(f"Skipping location {idx} with missing latitude or longitude")
|
536 |
-
# continue
|
537 |
-
|
538 |
-
# location_name = row.get('name', f"Location_{idx}")
|
539 |
-
# roi = ee.Geometry.Point([longitude, latitude])
|
540 |
-
|
541 |
-
# collection = ee.ImageCollection(dataset_id) \
|
542 |
-
# .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
|
543 |
-
# .filterBounds(roi)
|
544 |
-
|
545 |
-
# # Aggregate data based on the selected period
|
546 |
-
# if aggregation_period.lower() == 'daily':
|
547 |
-
# collection = aggregate_data_daily(collection)
|
548 |
-
# elif aggregation_period.lower() == 'weekly':
|
549 |
-
# collection = aggregate_data_weekly(collection)
|
550 |
-
# elif aggregation_period.lower() == 'monthly':
|
551 |
-
# collection = aggregate_data_monthly(collection, start_date_str, end_date_str)
|
552 |
-
# elif aggregation_period.lower() == 'yearly':
|
553 |
-
# collection = aggregate_data_yearly(collection)
|
554 |
-
|
555 |
-
# # Process each image in the collection
|
556 |
-
# image_list = collection.toList(collection.size())
|
557 |
-
# processed_weeks = set() # Track processed weeks to avoid duplicates
|
558 |
-
# for i in range(image_list.size().getInfo()):
|
559 |
-
# image = ee.Image(image_list.get(i))
|
560 |
-
|
561 |
-
# if aggregation_period.lower() == 'daily':
|
562 |
-
# timestamp = image.get('day')
|
563 |
-
# period_label = 'Date'
|
564 |
-
# date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo()
|
565 |
-
# elif aggregation_period.lower() == 'weekly':
|
566 |
-
# timestamp = image.get('week_start')
|
567 |
-
# period_label = 'Week'
|
568 |
-
# date = ee.String(timestamp).getInfo() # Already formatted as YYYY-MM-dd
|
569 |
-
# # Skip if week is outside the date range or already processed
|
570 |
-
# if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or
|
571 |
-
# pd.to_datetime(date) > pd.to_datetime(end_date_str) or
|
572 |
-
# date in processed_weeks):
|
573 |
-
# continue
|
574 |
-
# processed_weeks.add(date)
|
575 |
-
# elif aggregation_period.lower() == 'monthly':
|
576 |
-
# timestamp = image.get('month')
|
577 |
-
# period_label = 'Month'
|
578 |
-
# date = ee.Date(timestamp).format('YYYY-MM').getInfo()
|
579 |
-
# elif aggregation_period.lower() == 'yearly':
|
580 |
-
# timestamp = image.get('year')
|
581 |
-
# period_label = 'Year'
|
582 |
-
# date = ee.Date(timestamp).format('YYYY').getInfo()
|
583 |
-
|
584 |
-
# index_image = calculate_index_for_period(image, roi, index_choice, reducer_choice, custom_formula)
|
585 |
-
|
586 |
-
# try:
|
587 |
-
# index_value = index_image.reduceRegion(
|
588 |
-
# reducer=get_reducer(reducer_choice),
|
589 |
-
# geometry=roi,
|
590 |
-
# scale=30
|
591 |
-
# ).get(index_image.bandNames().get(0))
|
592 |
-
|
593 |
-
# calculated_value = index_value.getInfo()
|
594 |
-
|
595 |
-
# if isinstance(calculated_value, (int, float)):
|
596 |
-
# aggregated_results.append({
|
597 |
-
# 'Location Name': location_name,
|
598 |
-
# 'Latitude': latitude,
|
599 |
-
# 'Longitude': longitude,
|
600 |
-
# period_label: date,
|
601 |
-
# 'Start Date': start_date_str,
|
602 |
-
# 'End Date': end_date_str,
|
603 |
-
# 'Calculated Value': calculated_value
|
604 |
-
# })
|
605 |
-
# else:
|
606 |
-
# st.warning(f"Skipping invalid value for {location_name} on {date}")
|
607 |
-
# except Exception as e:
|
608 |
-
# st.error(f"Error retrieving value for {location_name}: {e}")
|
609 |
-
|
610 |
-
# progress_percentage = (idx + 1) / total_steps
|
611 |
-
# progress_bar.progress(progress_percentage)
|
612 |
-
# progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
|
613 |
-
|
614 |
-
# elif shape_type.lower() == "polygon":
|
615 |
-
# for idx, row in locations_df.iterrows():
|
616 |
-
# polygon_name = row.get('name', f"Polygon_{idx}")
|
617 |
-
# polygon_geometry = row.get('geometry')
|
618 |
-
# location_name = polygon_name
|
619 |
-
|
620 |
-
# try:
|
621 |
-
# roi = convert_to_ee_geometry(polygon_geometry)
|
622 |
-
# except ValueError as e:
|
623 |
-
# st.warning(f"Skipping invalid polygon {polygon_name}: {e}")
|
624 |
-
# continue
|
625 |
-
|
626 |
-
# collection = ee.ImageCollection(dataset_id) \
|
627 |
-
# .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
|
628 |
-
# .filterBounds(roi)
|
629 |
-
|
630 |
-
# # Aggregate data based on the selected period
|
631 |
-
# if aggregation_period.lower() == 'daily':
|
632 |
-
# collection = aggregate_data_daily(collection)
|
633 |
-
# elif aggregation_period.lower() == 'weekly':
|
634 |
-
# collection = aggregate_data_weekly(collection)
|
635 |
-
# elif aggregation_period.lower() == 'monthly':
|
636 |
-
# collection = aggregate_data_monthly(collection, start_date_str, end_date_str)
|
637 |
-
# elif aggregation_period.lower() == 'yearly':
|
638 |
-
# collection = aggregate_data_yearly(collection)
|
639 |
-
|
640 |
-
# # Process each image in the collection
|
641 |
-
# image_list = collection.toList(collection.size())
|
642 |
-
# processed_weeks = set() # Track processed weeks to avoid duplicates
|
643 |
-
# for i in range(image_list.size().getInfo()):
|
644 |
-
# image = ee.Image(image_list.get(i))
|
645 |
-
|
646 |
-
# if aggregation_period.lower() == 'daily':
|
647 |
-
# timestamp = image.get('day')
|
648 |
-
# period_label = 'Date'
|
649 |
-
# date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo()
|
650 |
-
# elif aggregation_period.lower() == 'weekly':
|
651 |
-
# timestamp = image.get('week_start')
|
652 |
-
# period_label = 'Week'
|
653 |
-
# date = ee.String(timestamp).getInfo() # Already formatted as YYYY-MM-dd
|
654 |
-
# # Skip if week is outside the date range or already processed
|
655 |
-
# if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or
|
656 |
-
# pd.to_datetime(date) > pd.to_datetime(end_date_str) or
|
657 |
-
# date in processed_weeks):
|
658 |
-
# continue
|
659 |
-
# processed_weeks.add(date)
|
660 |
-
# elif aggregation_period.lower() == 'monthly':
|
661 |
-
# timestamp = image.get('month')
|
662 |
-
# period_label = 'Month'
|
663 |
-
# date = ee.Date(timestamp).format('YYYY-MM').getInfo()
|
664 |
-
# elif aggregation_period.lower() == 'yearly':
|
665 |
-
# timestamp = image.get('year')
|
666 |
-
# period_label = 'Year'
|
667 |
-
# date = ee.Date(timestamp).format('YYYY').getInfo()
|
668 |
-
|
669 |
-
# index_image = calculate_index_for_period(image, roi, index_choice, reducer_choice, custom_formula)
|
670 |
-
|
671 |
-
# try:
|
672 |
-
# index_value = index_image.reduceRegion(
|
673 |
-
# reducer=get_reducer(reducer_choice),
|
674 |
-
# geometry=roi,
|
675 |
-
# scale=30
|
676 |
-
# ).get(index_image.bandNames().get(0))
|
677 |
-
|
678 |
-
# calculated_value = index_value.getInfo()
|
679 |
-
|
680 |
-
# if isinstance(calculated_value, (int, float)):
|
681 |
-
# aggregated_results.append({
|
682 |
-
# 'Location Name': location_name,
|
683 |
-
# period_label: date,
|
684 |
-
# 'Start Date': start_date_str,
|
685 |
-
# 'End Date': end_date_str,
|
686 |
-
# 'Calculated Value': calculated_value
|
687 |
-
# })
|
688 |
-
# else:
|
689 |
-
# st.warning(f"Skipping invalid value for {location_name} on {date}")
|
690 |
-
# except Exception as e:
|
691 |
-
# st.error(f"Error retrieving value for {location_name}: {e}")
|
692 |
-
|
693 |
-
# progress_percentage = (idx + 1) / total_steps
|
694 |
-
# progress_bar.progress(progress_percentage)
|
695 |
-
# progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
|
696 |
-
|
697 |
-
# # if aggregated_results:
|
698 |
-
# # result_df = pd.DataFrame(aggregated_results)
|
699 |
-
# # if aggregation_period.lower() == 'daily':
|
700 |
-
# # aggregated_output = result_df.groupby('Location Name').agg({
|
701 |
-
# # 'Latitude': 'first' if shape_type.lower() == 'point' else None,
|
702 |
-
# # 'Longitude': 'first' if shape_type.lower() == 'point' else None,
|
703 |
-
# # 'Start Date': 'first',
|
704 |
-
# # 'End Date': 'first',
|
705 |
-
# # 'Calculated Value': 'mean'
|
706 |
-
# # }).reset_index()
|
707 |
-
# # # Remove None columns (for polygons)
|
708 |
-
# # aggregated_output = aggregated_output[[col for col in aggregated_output.columns if col is not None]]
|
709 |
-
# # aggregated_output.rename(columns={'Calculated Value': 'Aggregated Value'}, inplace=True)
|
710 |
-
# # return aggregated_output.to_dict(orient='records')
|
711 |
-
# # else:
|
712 |
-
# # return result_df.to_dict(orient='records')
|
713 |
-
|
714 |
-
# # return []
|
715 |
-
|
716 |
-
# if aggregated_results:
|
717 |
-
# result_df = pd.DataFrame(aggregated_results)
|
718 |
-
# if aggregation_period.lower() == 'daily':
|
719 |
-
# # Define aggregation dictionary based on shape_type
|
720 |
-
# agg_dict = {
|
721 |
-
# 'Start Date': 'first',
|
722 |
-
# 'End Date': 'first',
|
723 |
-
# 'Calculated Value': 'mean'
|
724 |
-
# }
|
725 |
-
# if shape_type.lower() == 'point':
|
726 |
-
# agg_dict['Latitude'] = 'first'
|
727 |
-
# agg_dict['Longitude'] = 'first'
|
728 |
-
|
729 |
-
# aggregated_output = result_df.groupby('Location Name').agg(agg_dict).reset_index()
|
730 |
-
# aggregated_output.rename(columns={'Calculated Value': 'Aggregated Value'}, inplace=True)
|
731 |
-
# return aggregated_output.to_dict(orient='records')
|
732 |
-
# else:
|
733 |
-
# return result_df.to_dict(orient='records')
|
734 |
-
|
735 |
-
# return []
|
736 |
-
|
737 |
-
# # When the user clicks the process button, start the calculation
|
738 |
-
# if st.button(f"Calculate ({index_choice})"):
|
739 |
-
# if file_upload is not None:
|
740 |
-
# if shape_type.lower() == "point":
|
741 |
-
# results = process_aggregation(
|
742 |
-
# locations_df,
|
743 |
-
# start_date_str,
|
744 |
-
# end_date_str,
|
745 |
-
# dataset_id,
|
746 |
-
# index_choice,
|
747 |
-
# reducer_choice,
|
748 |
-
# shape_type,
|
749 |
-
# aggregation_period,
|
750 |
-
# custom_formula
|
751 |
-
# )
|
752 |
-
# if results:
|
753 |
-
# result_df = pd.DataFrame(results)
|
754 |
-
# st.write(f"Processed Results Table ({aggregation_period}):")
|
755 |
-
# st.dataframe(result_df)
|
756 |
-
# filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y/%m/%d')}_{end_date.strftime('%Y/%m/%d')}_{aggregation_period.lower()}.csv"
|
757 |
-
# st.download_button(
|
758 |
-
# label="Download results as CSV",
|
759 |
-
# data=result_df.to_csv(index=False).encode('utf-8'),
|
760 |
-
# file_name=filename,
|
761 |
-
# mime='text/csv'
|
762 |
-
# )
|
763 |
-
# st.spinner('')
|
764 |
-
# st.success('Processing complete!')
|
765 |
-
# else:
|
766 |
-
# st.warning("No results were generated.")
|
767 |
-
|
768 |
-
# elif shape_type.lower() == "polygon":
|
769 |
-
# results = process_aggregation(
|
770 |
-
# locations_df,
|
771 |
-
# start_date_str,
|
772 |
-
# end_date_str,
|
773 |
-
# dataset_id,
|
774 |
-
# index_choice,
|
775 |
-
# reducer_choice,
|
776 |
-
# shape_type,
|
777 |
-
# aggregation_period,
|
778 |
-
# custom_formula
|
779 |
-
# )
|
780 |
-
# if results:
|
781 |
-
# result_df = pd.DataFrame(results)
|
782 |
-
# st.write(f"Processed Results Table ({aggregation_period}):")
|
783 |
-
# st.dataframe(result_df)
|
784 |
-
# filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y/%m/%d')}_{end_date.strftime('%Y/%m/%d')}_{aggregation_period.lower()}.csv"
|
785 |
-
# st.download_button(
|
786 |
-
# label="Download results as CSV",
|
787 |
-
# data=result_df.to_csv(index=False).encode('utf-8'),
|
788 |
-
# file_name=filename,
|
789 |
-
# mime='text/csv'
|
790 |
-
# )
|
791 |
-
# st.spinner('')
|
792 |
-
# st.success('Processing complete!')
|
793 |
-
# else:
|
794 |
-
# st.warning("No results were generated.")
|
795 |
-
|
796 |
-
# else:
|
797 |
-
# st.warning("Please upload a file.")
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
import streamlit as st
|
802 |
import json
|
803 |
import ee
|
@@ -993,9 +193,6 @@ aggregation_period = st.selectbox("Select Aggregation Period", ["Daily", "Weekly
|
|
993 |
# Ask user whether they want to process 'Point' or 'Polygon' data
|
994 |
shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"])
|
995 |
|
996 |
-
# Ask user to upload a file based on shape type
|
997 |
-
file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
|
998 |
-
|
999 |
# Additional options based on shape type
|
1000 |
kernel_size = None
|
1001 |
include_boundary = None
|
@@ -1012,6 +209,10 @@ elif shape_type.lower() == "polygon":
|
|
1012 |
value=True,
|
1013 |
help="Check to include pixels on the polygon boundary; uncheck to exclude them."
|
1014 |
)
|
|
|
|
|
|
|
|
|
1015 |
|
1016 |
if file_upload is not None:
|
1017 |
# Read the user-uploaded file
|
@@ -1430,7 +631,7 @@ def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id,
|
|
1430 |
return []
|
1431 |
|
1432 |
# Button to trigger calculation
|
1433 |
-
if st.button("Calculate"):
|
1434 |
if file_upload is not None:
|
1435 |
if shape_type.lower() in ["point", "polygon"]:
|
1436 |
results = process_aggregation(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import json
|
3 |
import ee
|
|
|
193 |
# Ask user whether they want to process 'Point' or 'Polygon' data
|
194 |
shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"])
|
195 |
|
|
|
|
|
|
|
196 |
# Additional options based on shape type
|
197 |
kernel_size = None
|
198 |
include_boundary = None
|
|
|
209 |
value=True,
|
210 |
help="Check to include pixels on the polygon boundary; uncheck to exclude them."
|
211 |
)
|
212 |
+
|
213 |
+
# Ask user to upload a file based on shape type
|
214 |
+
file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
|
215 |
+
|
216 |
|
217 |
if file_upload is not None:
|
218 |
# Read the user-uploaded file
|
|
|
631 |
return []
|
632 |
|
633 |
# Button to trigger calculation
|
634 |
+
if st.button(f"Calculate({custom_formula})"):
|
635 |
if file_upload is not None:
|
636 |
if shape_type.lower() in ["point", "polygon"]:
|
637 |
results = process_aggregation(
|