File size: 30,843 Bytes
ffd6783
 
f4b0045
d5a8738
2fd3301
3a4f9a5
60b1538
0db3082
ef6db6b
c95b0fa
 
4d4270f
a5d11e6
b977014
a5d11e6
21e0c5d
5dec096
f86a704
0db3082
21e0c5d
 
 
 
 
0db3082
 
 
 
 
 
f86a704
0db3082
 
 
 
 
 
 
a5d11e6
8a3dad4
 
f86a704
 
 
116725d
 
8e4e9db
8a3dad4
14bdf12
f4b0045
 
14bdf12
f4b0045
 
 
cf7d33a
f4b0045
cf7d33a
7a7dd74
e070e1d
 
c04779d
7a7dd74
8299706
ffd6783
7a7dd74
e070e1d
0db3082
7a7dd74
c16c7db
3589313
 
fcba768
7a7dd74
 
8e4e9db
 
 
7a7dd74
cf7d33a
 
 
8e4e9db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a7dd74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45365f8
7a7dd74
f86a704
 
 
 
 
 
8e4e9db
116725d
d3ceb3a
8bd7214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d4270f
8bd7214
 
 
 
4d4270f
 
8bd7214
8e4e9db
8bd7214
 
 
 
 
116725d
8bd7214
45365f8
3ed34b1
9e83246
 
3ed34b1
 
 
 
 
 
497aee3
3ed34b1
8e4e9db
116725d
 
8e4e9db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2c85d1
 
 
 
8e4e9db
d155b1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e4e9db
d155b1c
c871e67
d155b1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e4e9db
d155b1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e4e9db
d155b1c
c871e67
d155b1c
 
 
 
 
 
 
 
 
 
 
8e4e9db
d155b1c
 
 
 
 
7a7dd74
8e4e9db
5cb85a9
 
 
fdc9145
116725d
8e4e9db
116725d
 
 
 
 
7a7dd74
8e4e9db
 
116725d
 
 
8e4e9db
 
 
116725d
 
 
 
8e4e9db
116725d
 
7a7dd74
8e4e9db
 
116725d
 
 
8e4e9db
 
 
116725d
 
8e4e9db
 
15ecf2b
8e4e9db
 
5ac6646
 
 
8e4e9db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15ecf2b
8e4e9db
 
 
 
 
 
 
 
7a7dd74
 
 
 
 
8e4e9db
7a7dd74
 
 
ef6db6b
2ce822f
8e4e9db
 
 
 
 
 
 
2ce822f
 
 
8e4e9db
2ce822f
7a7dd74
 
8e4e9db
ae36aa4
 
 
 
7a7dd74
ae36aa4
7a7dd74
 
 
ae36aa4
8e4e9db
7a7dd74
 
 
 
 
 
 
 
 
 
8e4e9db
 
7a7dd74
96396bc
8e4e9db
7a7dd74
7daa312
c0005e9
7a7dd74
 
 
96396bc
7a7dd74
 
 
 
 
 
 
 
96396bc
7a7dd74
8e4e9db
 
 
 
 
 
 
 
 
 
 
 
96396bc
7a7dd74
 
 
96396bc
7a7dd74
1ceff46
 
 
 
 
 
 
 
 
8e4e9db
1ceff46
 
 
 
 
 
36bfcb7
1ceff46
 
 
8e4e9db
36bfcb7
 
 
 
 
1ceff46
 
 
36bfcb7
1ceff46
 
 
7daa312
1ceff46
8e4e9db
1ceff46
7a7dd74
1ceff46
 
 
 
8e4e9db
1ceff46
 
96396bc
1ceff46
fee251e
 
0e0596e
 
7daa312
537ce85
 
1ceff46
fee251e
 
1ceff46
7a7dd74
 
96396bc
7a7dd74
 
 
96396bc
7a7dd74
 
 
 
 
96396bc
7a7dd74
 
8e4e9db
 
 
7a7dd74
 
 
96396bc
7a7dd74
 
 
96396bc
7a7dd74
1ceff46
 
 
 
 
 
 
 
 
8e4e9db
1ceff46
 
 
 
 
 
36bfcb7
1ceff46
 
 
8e4e9db
36bfcb7
 
 
 
 
1ceff46
 
 
36bfcb7
1ceff46
 
 
53b1732
1ceff46
8e4e9db
1ceff46
7a7dd74
1ceff46
 
 
 
8e4e9db
1ceff46
 
96396bc
1ceff46
fee251e
 
53b1732
537ce85
 
1ceff46
fee251e
 
1ceff46
7a7dd74
 
96396bc
7a7dd74
 
 
96396bc
a0ac8ef
2a717d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e4e9db
 
d2c85d1
7a7dd74
8e4e9db
7a7dd74
 
 
 
 
8e4e9db
7a7dd74
 
 
8e4e9db
 
 
7a7dd74
 
 
 
 
 
 
 
 
 
 
 
53b1732
7a7dd74
 
 
53b1732
0e0596e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
import streamlit as st
import json
import ee
import os
import pandas as pd
import geopandas as gpd
from datetime import datetime
import leafmap.foliumap as leafmap
import re
from shapely.geometry import base
from lxml import etree
from xml.etree import ElementTree as ET

# Set up the page layout
st.set_page_config(layout="wide")

# Custom button styling
m = st.markdown(
    """
    <style>
    div.stButton > button:first-child {
        background-color: #006400;
        color:#ffffff;
    }
    </style>""",
    unsafe_allow_html=True,
)

# Logo
st.write(
    f"""
    <div style="display: flex; justify-content: space-between; align-items: center;">
        <img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/ISRO_Logo.png"  style="width: 20%; margin-right: auto;">
        <img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/SAC_Logo.png"  style="width: 20%; margin-left: auto;">
    </div>
    """,
    unsafe_allow_html=True,
)

# Title
st.markdown(
    f"""
    <h1 style="text-align: center;">Precision Analysis for Vegetation, Water, and Air Quality</h1>
    """,
    unsafe_allow_html=True,
)
st.write("<h2><div style='text-align: center;'>User Inputs</div></h2>", unsafe_allow_html=True)

# Authenticate and initialize Earth Engine
earthengine_credentials = os.environ.get("EE_Authentication")

# Initialize Earth Engine with secret credentials
os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
    f.write(earthengine_credentials)

ee.Initialize(project='ee-yashsacisro24')

# Load the Sentinel dataset options from JSON file
with open("sentinel_datasets.json") as f:
    data = json.load(f)

# Display the title for the Streamlit app
st.title("Sentinel Dataset")

# Select dataset category (main selection)
main_selection = st.selectbox("Select Sentinel Dataset Category", list(data.keys()))

# If a category is selected, display the sub-options (specific datasets)
if main_selection:
    sub_options = data[main_selection]["sub_options"]
    sub_selection = st.selectbox("Select Specific Dataset ID", list(sub_options.keys()))

    # Display the selected dataset ID based on user input
    if sub_selection:
        st.write(f"You selected: {main_selection} -> {sub_options[sub_selection]}")
        st.write(f"Dataset ID: {sub_selection}")
        dataset_id = sub_selection  # Use the key directly as the dataset ID

# Earth Engine Index Calculator Section
st.header("Earth Engine Index Calculator")

# Load band information based on selected dataset
if main_selection and sub_selection:
    dataset_bands = data[main_selection]["bands"].get(sub_selection, [])
    st.write(f"Available Bands for {sub_options[sub_selection]}: {', '.join(dataset_bands)}")

    # Allow user to select 1 or 2 bands
    selected_bands = st.multiselect(
        "Select 1 or 2 Bands for Calculation",
        options=dataset_bands,
        default=[dataset_bands[0]] if dataset_bands else [],
        help="Select at least 1 band and up to 2 bands."
    )

    # Ensure minimum 1 and maximum 2 bands are selected
    if len(selected_bands) < 1:
        st.warning("Please select at least one band.")
        st.stop()
    elif len(selected_bands) > 2:
        st.warning("You can select a maximum of 2 bands.")
        st.stop()

    # Show custom formula input if bands are selected
    if selected_bands:
        default_formula = (
            f"{selected_bands[0]}" if len(selected_bands) == 1 
            else f"({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})"
        )
        custom_formula = st.text_input(
            "Enter Custom Formula (e.g., 'B3*B5/2' or '(B8 - B4) / (B8 + B4)')",
            value=default_formula,
            help=f"Use {', '.join(selected_bands)} in your formula. Example: 'B3*B5/2'"
        )

        if not custom_formula:
            st.warning("Please enter a custom formula to proceed.")
            st.stop()

        # Display the formula
        st.write(f"Custom Formula: {custom_formula}")

# Function to get the corresponding reducer based on user input
def get_reducer(reducer_name):
    """
    Map user-friendly reducer names to Earth Engine reducer objects.
    """
    reducers = {
        'mean': ee.Reducer.mean(),
        'sum': ee.Reducer.sum(),
        'median': ee.Reducer.median(),
        'min': ee.Reducer.min(),
        'max': ee.Reducer.max(),
        'count': ee.Reducer.count(),
    }
    return reducers.get(reducer_name.lower(), ee.Reducer.mean())

# Streamlit selectbox for reducer choice
reducer_choice = st.selectbox(
    "Select Reducer",
    ['mean', 'sum', 'median', 'min', 'max', 'count'],
    index=0  # Default to 'mean'
)

# Function to convert geometry to Earth Engine format
def convert_to_ee_geometry(geometry):
    if isinstance(geometry, base.BaseGeometry):
        if geometry.is_valid:
            geojson = geometry.__geo_interface__
            return ee.Geometry(geojson)
        else:
            raise ValueError("Invalid geometry: The polygon geometry is not valid.")
    elif isinstance(geometry, dict) or isinstance(geometry, str):
        try:
            if isinstance(geometry, str):
                geometry = json.loads(geometry)
            if 'type' in geometry and 'coordinates' in geometry:
                return ee.Geometry(geometry)
            else:
                raise ValueError("GeoJSON format is invalid.")
        except Exception as e:
            raise ValueError(f"Error parsing GeoJSON: {e}")
    elif isinstance(geometry, str) and geometry.lower().endswith(".kml"):
        try:
            tree = ET.parse(geometry)
            kml_root = tree.getroot()
            kml_namespace = {'kml': 'http://www.opengis.net/kml/2.2'}
            coordinates = kml_root.findall(".//kml:coordinates", kml_namespace)
            if coordinates:
                coords_text = coordinates[0].text.strip()
                coords = coords_text.split()
                coords = [tuple(map(float, coord.split(','))) for coord in coords]
                geojson = {"type": "Polygon", "coordinates": [coords]}
                return ee.Geometry(geojson)
            else:
                raise ValueError("KML does not contain valid coordinates.")
        except Exception as e:
            raise ValueError(f"Error parsing KML: {e}")
    else:
        raise ValueError("Unsupported geometry input type. Supported types are Shapely, GeoJSON, and KML.")

# Date Input for Start and End Dates
start_date = st.date_input("Start Date", value=pd.to_datetime('2024-11-01'))
end_date = st.date_input("End Date", value=pd.to_datetime('2024-12-01'))

# Convert start_date and end_date to string format for Earth Engine
start_date_str = start_date.strftime('%Y-%m-%d')
end_date_str = end_date.strftime('%Y-%m-%d')

# Aggregation period selection
aggregation_period = st.selectbox("Select Aggregation Period", ["Daily", "Weekly", "Monthly", "Yearly"], index=0)

# Ask user whether they want to process 'Point' or 'Polygon' data
shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"])

# Additional options based on shape type
kernel_size = None
include_boundary = None
if shape_type.lower() == "point":
    kernel_size = st.selectbox(
        "Select Calculation Area",
        ["Point", "3x3 Kernel", "5x5 Kernel"],
        index=0,
        help="Choose 'Point' for exact point calculation, or a kernel size for area averaging."
    )
elif shape_type.lower() == "polygon":
    include_boundary = st.checkbox(
        "Include Boundary Pixels",
        value=True,
        help="Check to include pixels on the polygon boundary; uncheck to exclude them."
    )
    
# Ask user to upload a file based on shape type
file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])


if file_upload is not None:
    # Read the user-uploaded file
    if shape_type.lower() == "point":
        if file_upload.name.endswith('.csv'):
            locations_df = pd.read_csv(file_upload)
        elif file_upload.name.endswith('.geojson'):
            locations_df = gpd.read_file(file_upload)
        elif file_upload.name.endswith('.kml'):
            locations_df = gpd.read_file(file_upload)
        else:
            st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
            locations_df = pd.DataFrame()

        if 'geometry' in locations_df.columns:
            if locations_df.geometry.geom_type.isin(['Polygon', 'MultiPolygon']).any():
                st.warning("The uploaded file contains polygon data. Please select 'Polygon' for processing.")
                st.stop()

        with st.spinner('Processing Map...'):
            if locations_df is not None and not locations_df.empty:
                if 'geometry' in locations_df.columns:
                    locations_df['latitude'] = locations_df['geometry'].y
                    locations_df['longitude'] = locations_df['geometry'].x

                if 'latitude' not in locations_df.columns or 'longitude' not in locations_df.columns:
                    st.error("Uploaded file is missing required 'latitude' or 'longitude' columns.")
                else:
                    st.write("Preview of the uploaded points data:")
                    st.dataframe(locations_df.head())
                    m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
                    for _, row in locations_df.iterrows():
                        latitude = row['latitude']
                        longitude = row['longitude']
                        if pd.isna(latitude) or pd.isna(longitude):
                            continue
                        m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
                    st.write("Map of Uploaded Points:")
                    m.to_streamlit()
                    st.session_state.map_data = m

    elif shape_type.lower() == "polygon":
        if file_upload.name.endswith('.csv'):
            locations_df = pd.read_csv(file_upload)
        elif file_upload.name.endswith('.geojson'):
            locations_df = gpd.read_file(file_upload)
        elif file_upload.name.endswith('.kml'):
            locations_df = gpd.read_file(file_upload)
        else:
            st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
            locations_df = pd.DataFrame()

        if 'geometry' in locations_df.columns:
            if locations_df.geometry.geom_type.isin(['Point', 'MultiPoint']).any():
                st.warning("The uploaded file contains point data. Please select 'Point' for processing.")
                st.stop()

        with st.spinner('Processing Map...'):
            if locations_df is not None and not locations_df.empty:
                if 'geometry' not in locations_df.columns:
                    st.error("Uploaded file is missing required 'geometry' column.")
                else:
                    st.write("Preview of the uploaded polygons data:")
                    st.dataframe(locations_df.head())
                    centroid_lat = locations_df.geometry.centroid.y.mean()
                    centroid_lon = locations_df.geometry.centroid.x.mean()
                    m = leafmap.Map(center=[centroid_lat, centroid_lon], zoom=10)
                    for _, row in locations_df.iterrows():
                        polygon = row['geometry']
                        if polygon.is_valid:
                            gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=locations_df.crs)
                            m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
                    st.write("Map of Uploaded Polygons:")
                    m.to_streamlit()
                    st.session_state.map_data = m

# Initialize session state for storing results
if 'results' not in st.session_state:
    st.session_state.results = []
if 'last_params' not in st.session_state:
    st.session_state.last_params = {}
if 'map_data' not in st.session_state:
    st.session_state.map_data = None

# Function to check if parameters have changed
def parameters_changed():
    return (
        st.session_state.last_params.get('main_selection') != main_selection or
        st.session_state.last_params.get('dataset_id') != dataset_id or
        st.session_state.last_params.get('selected_bands') != selected_bands or
        st.session_state.last_params.get('custom_formula') != custom_formula or
        st.session_state.last_params.get('start_date_str') != start_date_str or
        st.session_state.last_params.get('end_date_str') != end_date_str or
        st.session_state.last_params.get('shape_type') != shape_type or
        st.session_state.last_params.get('file_upload') != file_upload or
        st.session_state.last_params.get('kernel_size') != kernel_size or
        st.session_state.last_params.get('include_boundary') != include_boundary
    )

# If parameters have changed, reset the results
if parameters_changed():
    st.session_state.results = []
    st.session_state.last_params = {
        'main_selection': main_selection,
        'dataset_id': dataset_id,
        'selected_bands': selected_bands,
        'custom_formula': custom_formula,
        'start_date_str': start_date_str,
        'end_date_str': end_date_str,
        'shape_type': shape_type,
        'file_upload': file_upload,
        'kernel_size': kernel_size,
        'include_boundary': include_boundary
    }

# Function to calculate custom formula using eval safely
def calculate_custom_formula(image, geometry, selected_bands, custom_formula, reducer_choice, scale=30):
    try:
        band_values = {}
        for band in selected_bands:
            band_names = image.bandNames().getInfo()
            if band not in band_names:
                raise ValueError(f"The band '{band}' does not exist in the image.")
            band_values[band] = image.select(band)

        reducer = get_reducer(reducer_choice)
        reduced_values = {}
        for band in selected_bands:
            reduced_value = band_values[band].reduceRegion(
                reducer=reducer,
                geometry=geometry,
                scale=scale
            ).get(band).getInfo()
            if reduced_value is None:
                reduced_value = 0
            reduced_values[band] = float(reduced_value)

        formula = custom_formula
        for band in selected_bands:
            formula = formula.replace(band, str(reduced_values[band]))

        result = eval(formula, {"__builtins__": {}}, reduced_values)
        if not isinstance(result, (int, float)):
            raise ValueError("Formula evaluation did not result in a numeric value.")
        return ee.Image.constant(result).rename('custom_result')
    
    except ZeroDivisionError:
        st.error("Error: Division by zero occurred in the formula.")
        return ee.Image(0).rename('custom_result').set('error', 'Division by zero')
    except SyntaxError:
        st.error(f"Error: Invalid formula syntax in '{custom_formula}'.")
        return ee.Image(0).rename('custom_result').set('error', 'Invalid syntax')
    except ValueError as e:
        st.error(f"Error: {str(e)}")
        return ee.Image(0).rename('custom_result').set('error', str(e))
    except Exception as e:
        st.error(f"Unexpected error evaluating formula: {e}")
        return ee.Image(0).rename('custom_result').set('error', str(e))

# Function to calculate index for a period
def calculate_index_for_period(image, roi, selected_bands, custom_formula, reducer_choice):
    return calculate_custom_formula(image, roi, selected_bands, custom_formula, reducer_choice)

# Aggregation functions
def aggregate_data_daily(collection):
    collection = collection.map(lambda image: image.set('day', ee.Date(image.get('system:time_start')).format('YYYY-MM-dd')))
    grouped_by_day = collection.aggregate_array('day').distinct()
    def calculate_daily_mean(day):
        daily_collection = collection.filter(ee.Filter.eq('day', day))
        daily_mean = daily_collection.mean()
        return daily_mean.set('day', day)
    daily_images = ee.List(grouped_by_day.map(calculate_daily_mean))
    return ee.ImageCollection(daily_images)

def aggregate_data_weekly(collection):
    def set_week_start(image):
        date = ee.Date(image.get('system:time_start'))
        days_since_week_start = date.getRelative('day', 'week')
        offset = ee.Number(days_since_week_start).multiply(-1)
        week_start = date.advance(offset, 'day')
        return image.set('week_start', week_start.format('YYYY-MM-dd'))
    collection = collection.map(set_week_start)
    grouped_by_week = collection.aggregate_array('week_start').distinct()
    def calculate_weekly_mean(week_start):
        weekly_collection = collection.filter(ee.Filter.eq('week_start', week_start))
        weekly_mean = weekly_collection.mean()
        return weekly_mean.set('week_start', week_start)
    weekly_images = ee.List(grouped_by_week.map(calculate_weekly_mean))
    return ee.ImageCollection(weekly_images)

def aggregate_data_monthly(collection, start_date, end_date):
    collection = collection.filterDate(start_date, end_date)
    collection = collection.map(lambda image: image.set('month', ee.Date(image.get('system:time_start')).format('YYYY-MM')))
    grouped_by_month = collection.aggregate_array('month').distinct()
    def calculate_monthly_mean(month):
        monthly_collection = collection.filter(ee.Filter.eq('month', month))
        monthly_mean = monthly_collection.mean()
        return monthly_mean.set('month', month)
    monthly_images = ee.List(grouped_by_month.map(calculate_monthly_mean))
    return ee.ImageCollection(monthly_images)

def aggregate_data_yearly(collection):
    collection = collection.map(lambda image: image.set('year', ee.Date(image.get('system:time_start')).format('YYYY')))
    grouped_by_year = collection.aggregate_array('year').distinct()
    def calculate_yearly_mean(year):
        yearly_collection = collection.filter(ee.Filter.eq('year', year))
        yearly_mean = yearly_collection.mean()
        return yearly_mean.set('year', year)
    yearly_images = ee.List(grouped_by_year.map(calculate_yearly_mean))
    return ee.ImageCollection(yearly_images)

# Process aggregation function with kernel and boundary options
def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, custom_formula="", kernel_size=None, include_boundary=None):
    aggregated_results = []
    
    if not custom_formula:
        st.error("Custom formula cannot be empty. Please provide a formula.")
        return aggregated_results
    
    total_steps = len(locations_df)
    progress_bar = st.progress(0)
    progress_text = st.empty()
    
    with st.spinner('Processing data...'):
        if shape_type.lower() == "point":
            for idx, row in locations_df.iterrows():
                latitude = row.get('latitude')
                longitude = row.get('longitude')
                if pd.isna(latitude) or pd.isna(longitude):
                    st.warning(f"Skipping location {idx} with missing latitude or longitude")
                    continue
                
                location_name = row.get('name', f"Location_{idx}")
                
                # Define the region of interest based on kernel size
                if kernel_size == "3x3 Kernel":
                    # Assuming 30m resolution, 3x3 kernel = 90m x 90m
                    buffer_size = 45  # Half of 90m to center the square
                    roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds()
                elif kernel_size == "5x5 Kernel":
                    # 5x5 kernel = 150m x 150m
                    buffer_size = 75  # Half of 150m
                    roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds()
                else:  # Point
                    roi = ee.Geometry.Point([longitude, latitude])
                
                collection = ee.ImageCollection(dataset_id) \
                    .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
                    .filterBounds(roi)
                
                if aggregation_period.lower() == 'daily':
                    collection = aggregate_data_daily(collection)
                elif aggregation_period.lower() == 'weekly':
                    collection = aggregate_data_weekly(collection)
                elif aggregation_period.lower() == 'monthly':
                    collection = aggregate_data_monthly(collection, start_date_str, end_date_str)
                elif aggregation_period.lower() == 'yearly':
                    collection = aggregate_data_yearly(collection)
                
                image_list = collection.toList(collection.size())
                processed_weeks = set()
                for i in range(image_list.size().getInfo()):
                    image = ee.Image(image_list.get(i))
                    
                    if aggregation_period.lower() == 'daily':
                        timestamp = image.get('day')
                        period_label = 'Date'
                        date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo()
                    elif aggregation_period.lower() == 'weekly':
                        timestamp = image.get('week_start')
                        period_label = 'Week'
                        date = ee.String(timestamp).getInfo()
                        if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or 
                            pd.to_datetime(date) > pd.to_datetime(end_date_str) or 
                            date in processed_weeks):
                            continue
                        processed_weeks.add(date)
                    elif aggregation_period.lower() == 'monthly':
                        timestamp = image.get('month')
                        period_label = 'Month'
                        date = ee.Date(timestamp).format('YYYY-MM').getInfo()
                    elif aggregation_period.lower() == 'yearly':
                        timestamp = image.get('year')
                        period_label = 'Year'
                        date = ee.Date(timestamp).format('YYYY').getInfo()
                    
                    index_image = calculate_index_for_period(image, roi, selected_bands, custom_formula, reducer_choice)
                    
                    try:
                        index_value = index_image.reduceRegion(
                            reducer=get_reducer(reducer_choice),
                            geometry=roi,
                            scale=30
                        ).get('custom_result')
                        
                        calculated_value = index_value.getInfo()
                        
                        if isinstance(calculated_value, (int, float)):
                            aggregated_results.append({
                                'Location Name': location_name,
                                'Latitude': latitude,
                                'Longitude': longitude,
                                period_label: date,
                                'Start Date': start_date_str,
                                'End Date': end_date_str,
                                'Calculated Value': calculated_value
                            })
                        else:
                            st.warning(f"Skipping invalid value for {location_name} on {date}")
                    except Exception as e:
                        st.error(f"Error retrieving value for {location_name}: {e}")
                
                progress_percentage = (idx + 1) / total_steps
                progress_bar.progress(progress_percentage)
                progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
        
        elif shape_type.lower() == "polygon":
            for idx, row in locations_df.iterrows():
                polygon_name = row.get('name', f"Polygon_{idx}")
                polygon_geometry = row.get('geometry')
                location_name = polygon_name
                
                try:
                    roi = convert_to_ee_geometry(polygon_geometry)
                    if not include_boundary:
                        # Erode the polygon by a small buffer (e.g., 1 pixel = 30m) to exclude boundary
                        roi = roi.buffer(-30).bounds()
                except ValueError as e:
                    st.warning(f"Skipping invalid polygon {polygon_name}: {e}")
                    continue
                
                collection = ee.ImageCollection(dataset_id) \
                    .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
                    .filterBounds(roi)
                
                if aggregation_period.lower() == 'daily':
                    collection = aggregate_data_daily(collection)
                elif aggregation_period.lower() == 'weekly':
                    collection = aggregate_data_weekly(collection)
                elif aggregation_period.lower() == 'monthly':
                    collection = aggregate_data_monthly(collection, start_date_str, end_date_str)
                elif aggregation_period.lower() == 'yearly':
                    collection = aggregate_data_yearly(collection)
                
                image_list = collection.toList(collection.size())
                processed_weeks = set()
                for i in range(image_list.size().getInfo()):
                    image = ee.Image(image_list.get(i))
                    
                    if aggregation_period.lower() == 'daily':
                        timestamp = image.get('day')
                        period_label = 'Date'
                        date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo()
                    elif aggregation_period.lower() == 'weekly':
                        timestamp = image.get('week_start')
                        period_label = 'Week'
                        date = ee.String(timestamp).getInfo()
                        if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or 
                            pd.to_datetime(date) > pd.to_datetime(end_date_str) or 
                            date in processed_weeks):
                            continue
                        processed_weeks.add(date)
                    elif aggregation_period.lower() == 'monthly':
                        timestamp = image.get('month')
                        period_label = 'Month'
                        date = ee.Date(timestamp).format('YYYY-MM').getInfo()
                    elif aggregation_period.lower() == 'yearly':
                        timestamp = image.get('year')
                        period_label = 'Year'
                        date = ee.Date(timestamp).format('YYYY').getInfo()
                    
                    index_image = calculate_index_for_period(image, roi, selected_bands, custom_formula, reducer_choice)
                    
                    try:
                        index_value = index_image.reduceRegion(
                            reducer=get_reducer(reducer_choice),
                            geometry=roi,
                            scale=30
                        ).get('custom_result')
                        
                        calculated_value = index_value.getInfo()
                        
                        if isinstance(calculated_value, (int, float)):
                            aggregated_results.append({
                                'Location Name': location_name,
                                period_label: date,
                                'Start Date': start_date_str,
                                'End Date': end_date_str,
                                'Calculated Value': calculated_value
                            })
                        else:
                            st.warning(f"Skipping invalid value for {location_name} on {date}")
                    except Exception as e:
                        st.error(f"Error retrieving value for {location_name}: {e}")
                
                progress_percentage = (idx + 1) / total_steps
                progress_bar.progress(progress_percentage)
                progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
    
    if aggregated_results:
        result_df = pd.DataFrame(aggregated_results)
        if aggregation_period.lower() == 'daily':
            agg_dict = {
                'Start Date': 'first',
                'End Date': 'first',
                'Calculated Value': 'mean'
            }
            if shape_type.lower() == 'point':
                agg_dict['Latitude'] = 'first'
                agg_dict['Longitude'] = 'first'
            aggregated_output = result_df.groupby('Location Name').agg(agg_dict).reset_index()
            aggregated_output.rename(columns={'Calculated Value': 'Aggregated Value'}, inplace=True)
            return aggregated_output.to_dict(orient='records')
        else:
            return result_df.to_dict(orient='records')
    return []

# Button to trigger calculation
if st.button(f"Calculate({custom_formula})"):
    if file_upload is not None:
        if shape_type.lower() in ["point", "polygon"]:
            results = process_aggregation(
                locations_df,
                start_date_str,
                end_date_str,
                dataset_id,
                selected_bands,
                reducer_choice,
                shape_type,
                aggregation_period,
                custom_formula,
                kernel_size=kernel_size,
                include_boundary=include_boundary
            )
            if results:
                result_df = pd.DataFrame(results)
                st.write(f"Processed Results Table ({aggregation_period}):")
                st.dataframe(result_df)
                filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y/%m/%d')}_{end_date.strftime('%Y/%m/%d')}_{aggregation_period.lower()}.csv"
                st.download_button(
                    label="Download results as CSV",
                    data=result_df.to_csv(index=False).encode('utf-8'),
                    file_name=filename,
                    mime='text/csv'
                )
                st.spinner('')
                st.success('Processing complete!')
            else:
                st.warning("No results were generated.")
        else:
            st.warning("Please upload a file.")