File size: 19,920 Bytes
ffd6783
 
f4b0045
d5a8738
2fd3301
3a4f9a5
60b1538
0db3082
ef6db6b
a5d11e6
b977014
a5d11e6
21e0c5d
5dec096
f86a704
0db3082
21e0c5d
 
 
 
 
0db3082
 
 
 
 
 
f86a704
0db3082
 
 
 
 
 
 
a5d11e6
8a3dad4
 
f86a704
 
 
116725d
 
6255488
8a3dad4
14bdf12
f4b0045
 
14bdf12
f4b0045
 
 
cf7d33a
f4b0045
cf7d33a
13769e5
e070e1d
 
c04779d
5dec096
8299706
ffd6783
61f2958
e070e1d
0db3082
c16c7db
3589313
 
fcba768
cf7d33a
 
 
61f2958
cf7d33a
 
9d458b0
 
 
61f2958
7483788
fe61a21
7483788
fe61a21
7483788
fe61a21
7483788
6255488
45365f8
 
f86a704
 
 
 
 
 
 
116725d
 
 
 
 
 
 
45365f8
116725d
 
 
df89cb2
 
116725d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36bd00d
 
 
 
 
 
 
7b116ed
36bd00d
5cb85a9
 
 
 
fdc9145
116725d
 
 
 
 
 
 
 
 
 
 
 
47d2a2f
116725d
 
 
 
 
 
 
 
 
 
 
 
47d2a2f
116725d
 
f86a704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116725d
 
f86a704
 
116725d
f86a704
116725d
 
 
f86a704
 
 
 
 
 
 
 
 
 
210f81f
f86a704
 
116725d
 
 
f86a704
116725d
 
 
f86a704
 
 
 
 
 
 
 
 
 
116725d
f86a704
116725d
 
f86a704
116725d
 
f86a704
 
 
 
 
 
 
 
 
 
 
cd7ebd4
f86a704
116725d
f86a704
 
 
 
 
116725d
 
47d2a2f
f86a704
116725d
 
f86a704
116725d
f86a704
116725d
 
f86a704
fc01bc4
f86a704
 
 
 
 
 
 
 
 
3450ce4
ef6db6b
 
 
 
 
f86a704
 
 
 
ef6db6b
9061932
 
 
ef6db6b
f86a704
ef6db6b
f86a704
 
 
ef6db6b
 
 
 
 
e2d7603
ef6db6b
e2d7603
ef6db6b
e2d7603
ef6db6b
 
 
f86a704
ef6db6b
 
 
 
 
 
f86a704
ef6db6b
f86a704
ef6db6b
 
 
f86a704
ef6db6b
 
 
f86a704
ef6db6b
 
f86a704
ef6db6b
 
 
 
f86a704
ef6db6b
f86a704
ef6db6b
 
 
f86a704
ef6db6b
 
f86a704
 
ef6db6b
 
f86a704
e2d7603
 
 
 
47d2a2f
f86a704
e2d7603
f86a704
47d2a2f
f86a704
e2d7603
47d2a2f
f86a704
e2d7603
 
 
fc01bc4
 
 
 
 
 
f86a704
 
f3d5ab0
ef6db6b
fc01bc4
ef6db6b
fc01bc4
ef6db6b
 
fc01bc4
ef6db6b
 
 
fc01bc4
ef6db6b
f86a704
ef6db6b
f86a704
ef6db6b
f86a704
ef6db6b
f86a704
 
ef6db6b
 
f86a704
ef6db6b
 
 
f86a704
 
fc01bc4
20e7910
 
 
 
fc01bc4
20e7910
ef6db6b
 
fc01bc4
 
f86a704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71db07d
f86a704
 
 
9061932
f86a704
71db07d
f86a704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2914ee
f86a704
 
 
 
 
e2914ee
f86a704
 
e2914ee
 
f86a704
 
e2914ee
 
 
 
 
ef6db6b
fc01bc4
ef6db6b
 
 
fc01bc4
 
 
 
 
 
 
 
 
ef6db6b
 
 
 
 
f86a704
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
import streamlit as st
import json
import ee
import os
import pandas as pd
import geopandas as gpd
from datetime import datetime
import leafmap.foliumap as leafmap
import re

# Set up the page layout
st.set_page_config(layout="wide")

# Custom button styling
m = st.markdown(
    """
    <style>
    div.stButton > button:first-child {
        background-color: #006400;
        color:#ffffff;
    }
    </style>""",
    unsafe_allow_html=True,
)

# Logo
st.write(
    f"""
    <div style="display: flex; justify-content: space-between; align-items: center;">
        <img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/ISRO_Logo.png"  style="width: 20%; margin-right: auto;">
        <img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/SAC_Logo.png"  style="width: 20%; margin-left: auto;">
    </div>
    """,
    unsafe_allow_html=True,
)

# Title
st.markdown(
    f"""
    <h1 style="text-align: center;">Precision Analysis for Vegetation, Water, and Air Quality</h1>
    """,
    unsafe_allow_html=True,
)
st.write("<h2><div style='text-align: center;'>User  Inputs</div></h2>", unsafe_allow_html=True)

# Authenticate and initialize Earth Engine
earthengine_credentials = os.environ.get("EE_Authentication")

# Initialize Earth Engine with secret credentials
os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
    f.write(earthengine_credentials)

ee.Initialize(project='ee-yashsacisro24')

# Load Sentinel dataset options from JSON file
with open("sentinel_datasets.json") as f:
    data = json.load(f)

# Display the title and dataset selection
st.title("Sentinel Dataset")

# Select dataset category and subcategory (case-insensitive selection)
main_selection = st.selectbox("Select Sentinel Dataset Category", list(data.keys()))

if main_selection:
    sub_options = data[main_selection]["sub_options"]
    sub_selection = st.selectbox("Select Specific Dataset ID", list(sub_options.keys()))

# Earth Engine Index Calculator Section
st.header("Earth Engine Index Calculator")

# Choose Index or Custom Formula (case-insensitive)
index_choice = st.selectbox("Select an Index or Enter Custom Formula", ['NDVI', 'NDWI', 'Average NO₂', 'Custom Formula'])

# Initialize custom_formula variable
custom_formula = ""

# Display corresponding formula based on the index selected (case-insensitive)
if index_choice.lower() == 'ndvi':
    st.write("Formula for NDVI: NDVI = (B8 - B4) / (B8 + B4)")
elif index_choice.lower() == 'ndwi':
    st.write("Formula for NDWI: NDWI = (B3 - B8) / (B3 + B8)")
elif index_choice.lower() == 'average no₂':
    st.write("Formula for Average NO₂: Average NO₂ = Mean(NO2 band)")
elif index_choice.lower() == 'custom formula':
    custom_formula = st.text_input("Enter Custom Formula (e.g., '(B5 - B4) / (B5 + B4)')")
    st.write(f"Custom Formula: {custom_formula}")  # Display the custom formula after the user inputs it

# Reducer selection
reducer_choice = st.selectbox(
    "Select Reducer",
    ['mean', 'sum', 'median', 'min', 'max', 'count'],
    index=0  # Default to 'mean'
)

# Function to check if the polygon geometry is valid and convert it to the correct format
def convert_to_ee_geometry(geometry):
    if geometry.is_valid:
        geojson = geometry.__geo_interface__
        return ee.Geometry(geojson)
    else:
        raise ValueError("Invalid geometry: The polygon geometry is not valid.")

# Function to read points from CSV
def read_csv(file_path):
    df = pd.read_csv(file_path)
    return df

# Function to read points from GeoJSON
def read_geojson(file_path):
    gdf = gpd.read_file(file_path)
    return gdf

# Function to read points from KML
def read_kml(file_path):
    gdf = gpd.read_file(file_path, driver='KML')
    return gdf

# Ask user whether they want to process 'Point' or 'Polygon' data (case-insensitive)
shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"])

# Ask user to upload a file based on shape type (case-insensitive)
file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])

# Date Input for Start and End Dates
start_date = st.date_input("Start Date", value=pd.to_datetime('2020-01-01'))
end_date = st.date_input("End Date", value=pd.to_datetime('2020-12-31'))

# Convert start_date and end_date to string format for Earth Engine
start_date_str = start_date.strftime('%Y-%m-%d')
end_date_str = end_date.strftime('%Y-%m-%d')

# Initialize session state for storing results if not already done
if 'results' not in st.session_state:
    st.session_state.results = []
if 'last_params' not in st.session_state:
    st.session_state.last_params = {}
if 'map_data' not in st.session_state:
    st.session_state.map_data = None  # Initialize map_data

# Function to check if parameters have changed
def parameters_changed():
    return (
        st.session_state.last_params.get('main_selection') != main_selection or
        st.session_state.last_params.get('sub_selection') != sub_selection or
        st.session_state.last_params.get('index_choice') != index_choice or
        st.session_state.last_params.get('start_date_str') != start_date_str or
        st.session_state.last_params.get('end_date_str') != end_date_str or
        st.session_state.last_params.get('shape_type') != shape_type or
        st.session_state.last_params.get('file_upload') != file_upload
    )

# If parameters have changed, reset the results
if parameters_changed():
    st.session_state.results = []  # Clear the previous results
    st.session_state.last_params = {
        'main_selection': main_selection,
        'sub_selection': sub_selection,
        'index_choice': index_choice,
        'start_date_str': start_date_str,
        'end_date_str': end_date_str,
        'shape_type': shape_type,
        'file_upload': file_upload
    }

# Function to get the corresponding reducer based on user input
def get_reducer(reducer_name):
    """
    Map user-friendly reducer names to Earth Engine reducer objects.

    Args:
        reducer_name (str): The name of the reducer (e.g., 'mean', 'sum', 'median').

    Returns:
        ee.Reducer: The corresponding Earth Engine reducer.
    """
    reducers = {
        'mean': ee.Reducer.mean(),
        'sum': ee.Reducer.sum(),
        'median': ee.Reducer.median(),
        'min': ee.Reducer.min(),
        'max': ee.Reducer.max(),
        'count': ee.Reducer.count(),
    }
    
    # Default to 'mean' if the reducer_name is not recognized
    return reducers.get(reducer_name.lower(), ee.Reducer.mean())

# Function to calculate NDVI
def calculate_ndvi(image, geometry):
    ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
    
    # Perform reduction on the region with the selected reducer
    result = ndvi.reduceRegion(
        reducer=get_reducer(reducer_choice),
        geometry=geometry,
        scale=30
    )
    
    # Output debugging information
    result_value = result.get('NDVI')
    try:
        calculated_value = result_value.getInfo()
        st.write(f"NDVI calculation using {reducer_choice}: {calculated_value}")
    except Exception as e:
        st.error(f"Error retrieving NDVI result: {e}")
    
    return result_value


# Function to calculate NDWI
def calculate_ndwi(image, geometry):
    ndwi = image.normalizedDifference(['B3', 'B8']).rename('NDWI')
    result = ndwi.reduceRegion(
        reducer=get_reducer(reducer_choice),
        geometry=geometry,
        scale=30
    )
    
    # Output debugging information
    result_value = result.get('NDWI')
    try:
        calculated_value = result_value.getInfo()
        st.write(f"NDVI calculation using {reducer_choice}: {calculated_value}")
    except Exception as e:
        st.error(f"Error retrieving NDVI result: {e}")
    
    return result_value

# Function to calculate Average NO₂ for Sentinel-5P
def calculate_avg_no2_sentinel5p(image, geometry):
    no2 = image.select('NO2').reduceRegion(
        reducer=get_reducer(reducer_choice),
        geometry=geometry,
        scale=1000
       )
    
    # Output debugging information
    result_value = result.get('NDVI')
    try:
        calculated_value = result_value.getInfo()
        st.write(f"NDVI calculation using {reducer_choice}: {calculated_value}")
    except Exception as e:
        st.error(f"Error retrieving NDVI result: {e}")
    
    return result_value

# Function to calculate Custom Formula
def calculate_custom_formula(image, geometry, formula, scale=30):
    """
    Calculate a custom formula on an image and return the result for a given geometry,
    using a user-specified reducer.
    """
    # Dynamically generate the dictionary of band references from the image
    band_names = image.bandNames().getInfo()
    band_dict = {band: image.select(band) for band in band_names}
    
    # Use the formula with the bands in the image
    result_image = image.expression(formula, band_dict).rename('CustomResult')

    # Reduce the region to get the result based on the specified reducer
    result = result_image.reduceRegion(
        reducer=get_reducer(reducer_choice),
        geometry=geometry,
        scale=scale
      )
    
    # Output debugging information
    result_value = result.get('CustomResult')
    try:
        calculated_value = result_value.getInfo()
        st.write(f"NDVI calculation using {reducer_choice}: {calculated_value}")
    except Exception as e:
        st.error(f"Error retrieving NDVI result: {e}")
    
    return result_value

# Function to get the most recent image from the collection
def get_most_recent_image(image_collection):
    image = image_collection.sort('system:time_start', False).first()
    return image


# Function to process the custom formula
def process_custom_formula(image, geometry, formula):
    return calculate_custom_formula(image, geometry, formula)

locations_df = None  # Initialize locations_df to None
polygons_df = None   # Ensure polygons_df is initialized at the beginning

# Process each point (with additional checks for file validity)
# Check the shape type and assign polygons_df only for Polygon data
if file_upload:
    # locations_df = None  # Initialize locations_df to None
    # polygons_df = None   # Ensure polygons_df is initialized at the beginning

    file_extension = os.path.splitext(file_upload.name)[1].lower()

    # Read file based on shape type
    if shape_type == 'Point':
        if file_extension == '.csv':
            locations_df = read_csv(file_upload)
        elif file_extension == '.geojson':
            locations_df = read_geojson(file_upload)
        elif file_extension == '.kml':
            locations_df = read_kml(file_upload)
        else:
            st.error("Unsupported file type. Please upload a CSV, GeoJSON, or KML file for points.")
    elif shape_type == 'Polygon':
        if file_extension == '.geojson':
            polygons_df = read_geojson(file_upload)
        elif file_extension == '.kml':
            polygons_df = read_kml(file_upload)
        else:
            st.error("Unsupported file type. Please upload a GeoJSON or KML file for polygons.")


    if locations_df is not None and not locations_df.empty:
        # Ensure the necessary columns exist in the dataframe
        if 'latitude' not in locations_df.columns or 'longitude' not in locations_df.columns:
            st.error("Uploaded file is missing required 'latitude' or 'longitude' columns.")
        else:
            # Display a preview of the points data
            st.write("Preview of the uploaded points data:")
            st.dataframe(locations_df.head())

            # Create a LeafMap object to display the points
            m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)

            # Add points to the map using a loop
            for _, row in locations_df.iterrows():
                latitude = row['latitude']
                longitude = row['longitude']
                
                # Check if latitude or longitude are NaN and skip if they are
                if pd.isna(latitude) or pd.isna(longitude):
                    continue  # Skip this row and move to the next one
                
                m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))

            # Display map
            st.write("Map of Uploaded Points:")
            m.to_streamlit()

            # Store the map in session_state
            st.session_state.map_data = m

        # Process each point for index calculation
        for idx, row in locations_df.iterrows():
            latitude = row['latitude']
            longitude = row['longitude']
            location_name = row.get('name', f"Location_{idx}")

            # Skip processing if latitude or longitude is NaN
            if pd.isna(latitude) or pd.isna(longitude):
                continue  # Skip this row and move to the next one

            # Define the region of interest (ROI)
            roi = ee.Geometry.Point([longitude, latitude])

            # Load Sentinel-2 image collection
            collection = ee.ImageCollection(sub_options[sub_selection]) \
                .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
                .filterBounds(roi)

            image = get_most_recent_image(collection)
            if not image:
                st.warning(f"No images found for {location_name}.")
            else:
                st.write(f"Found images for {location_name}.")
                # Perform the calculation based on user selection
                # Perform the calculation based on user selection
                result = None
                if index_choice == 'NDVI':
                    result = calculate_ndvi(image, roi)
                elif index_choice == 'NDWI':
                    result = calculate_ndwi(image, roi)
                elif index_choice == 'Average NO₂':
                    if 'NO2' in image.bandNames().getInfo():
                        result = calculate_avg_no2_sentinel5p(image, roi)
                    else:
                        st.warning(f"No NO2 band found for {location_name}. Please use Sentinel-5P for NO₂ data.")
                elif index_choice.lower() == 'custom formula' and custom_formula:
                    result = process_custom_formula(image, roi, custom_formula)

                # Validate result before using getInfo
                if result is not None:
                    calculated_value = None  # Initialize the calculated_value as None

                # Check if the result is a dictionary
                    if isinstance(result, dict):
                        # Extract the value using the appropriate key (adjust the key name as needed)
                        calculated_value = result.get('CustomResult', None)  # Replace 'CustomResult' if using NDVI, NDWI, etc.
                    else:
                        try:
                            # If it's an Earth Engine object, get the value using getInfo
                            calculated_value = result.getInfo()
                        except Exception as e:
                            st.error(f"Error getting result info: {e}")
    
                    # If a valid calculated_value is found, append the result to session_state
                    if calculated_value is not None:
                        st.session_state.results.append({
                            'Location Name': location_name,
                            'Latitude': latitude,
                            'Longitude': longitude,
                            'Calculated Value': calculated_value
                        })
                    else:
                        st.warning(f"No value calculated for {location_name}.")
                else:
                    st.warning(f"No value calculated for {location_name}.")
                    
    
    # Check if polygons_df is populated for polygons
    if polygons_df is not None:
        st.write("Preview of the uploaded polygons data:")
        st.dataframe(polygons_df.head())

        m = leafmap.Map(center=[polygons_df.geometry.centroid.y.mean(), polygons_df.geometry.centroid.x.mean()], zoom=10)

        for _, row in polygons_df.iterrows():
            polygon = row['geometry']
            if polygon.is_valid:
                gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=polygons_df.crs)
                m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))

        st.write("Map of Uploaded Polygons:")
        m.to_streamlit()
        st.session_state.map_data = m

        for idx, row in polygons_df.iterrows():
            polygon = row['geometry']
            location_name = row.get('name', f"Polygon_{idx}")

            try:
                roi = convert_to_ee_geometry(polygon)
            except ValueError as e:
                st.error(str(e))
                continue

            collection = ee.ImageCollection(sub_options[sub_selection]) \
                .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
                .filterBounds(roi)

            image = get_most_recent_image(collection)

            if not image:
                st.warning(f"No images found for {location_name}.")
            else:
                st.write(f"Found an image for {location_name}.")
                result = None
                if index_choice.lower() == 'ndvi':
                    result = calculate_ndvi(image, roi)
                elif index_choice.lower() == 'ndwi':
                    result = calculate_ndwi(image, roi)
                elif index_choice.lower() == 'average no₂':
                    if 'NO2' in image.bandNames().getInfo():
                        result = calculate_avg_no2_sentinel5p(image, roi)
                    else:
                        st.warning(f"No NO2 band found for {location_name}. Please use Sentinel-5P for NO₂ data.")
                elif index_choice.lower() == 'custom formula' and custom_formula:
                    result = process_custom_formula(image, roi, custom_formula)

                if result is not None:
                    # Initialize the calculated_value as None
                    calculated_value = None
    
                # Check if the result is a dictionary (e.g., custom formula result)
                if isinstance(result, dict) and 'CustomResult' in result:
                    calculated_value = result['CustomResult']  # Extract the numeric value from the dictionary
                # If the result is a numeric value (e.g., NDVI, NDWI, or NO2)
                elif isinstance(result, (int, float)):
                    calculated_value = result
    
                # If a valid calculated_value is found, append the result to session_state
                if calculated_value is not None:
                    st.session_state.results.append({
                        'Location Name': location_name,
                        'Calculated Value': calculated_value
                    })

# After processing, show the results
if st.session_state.results:
    result_df = pd.DataFrame(st.session_state.results)

    if shape_type.lower() == 'point':
        st.write("Processed Results Table (Points):")
        st.dataframe(result_df[['Location Name', 'Latitude', 'Longitude', 'Calculated Value']])
    else:
        st.write("Processed Results Table (Polygons):")
        st.dataframe(result_df[['Location Name', 'Calculated Value']])

    filename = f"{main_selection}_{sub_selection}_{start_date.strftime('%Y/%m/%d')}_{end_date.strftime('%Y/%m/%d')}_{shape_type}.csv"

    st.download_button(
        label="Download results as CSV",
        data=result_df.to_csv(index=False).encode('utf-8'),
        file_name=filename,
        mime='text/csv'
    )