File size: 37,799 Bytes
5716f29
 
 
 
 
 
 
 
 
f757fb8
e810f2a
f757fb8
ad9f022
0db3082
5716f29
 
a5d11e6
136ef64
f757fb8
136ef64
 
 
 
 
 
 
 
 
a0fc76f
e810f2a
7453fdd
 
 
 
 
 
 
 
 
 
 
51d0b60
5e89494
e8d9662
d2bd325
7453fdd
 
 
 
a0fc76f
5716f29
 
 
 
 
 
5e5dbac
f757fb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad9f022
 
f757fb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad9f022
f757fb8
 
 
 
 
 
 
 
 
ad9f022
 
 
 
 
f757fb8
 
 
 
 
 
 
 
 
 
 
 
 
ad9f022
f757fb8
ad9f022
 
f757fb8
 
 
d8c2f55
 
e953c19
 
 
f757fb8
 
e953c19
 
 
 
 
 
f757fb8
 
e953c19
 
 
 
 
 
f757fb8
 
e953c19
 
 
 
 
 
f757fb8
e810f2a
d8c2f55
 
f757fb8
 
78c832c
 
f757fb8
 
 
 
 
 
78c832c
d8c2f55
f757fb8
 
 
 
 
 
e953c19
 
 
 
f757fb8
 
e953c19
8e4e9db
f757fb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d3ba23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f757fb8
1d3ba23
f757fb8
 
 
 
 
 
1d3ba23
f757fb8
 
1d3ba23
f757fb8
 
 
 
 
 
 
 
1d3ba23
f757fb8
1d3ba23
f757fb8
 
 
 
1d3ba23
f757fb8
 
 
 
1d3ba23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f757fb8
 
 
 
 
 
1d3ba23
f757fb8
 
 
 
 
 
 
 
 
1d3ba23
 
f757fb8
1d3ba23
f757fb8
 
 
 
1d3ba23
f757fb8
 
 
 
1d3ba23
 
 
 
c1713eb
f757fb8
1d3ba23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e810f2a
04d275e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f757fb8
 
04d275e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f757fb8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
import streamlit as st
import json
import ee
import os
import pandas as pd
import geopandas as gpd
from datetime import datetime
import leafmap.foliumap as leafmap
import re
from shapely.geometry import base
from xml.etree import ElementTree as XET
from concurrent.futures import ThreadPoolExecutor, as_completed
import time

# Set up the page layout
st.set_page_config(layout="wide")

# Custom button styling
m = st.markdown(
    """
    <style>
    div.stButton > button:first-child {
        background-color: #006400;
        color:#ffffff;
    }
    </style>""",
    unsafe_allow_html=True,
)

# Logo and Title
st.write(
    f"""
    <div style="display: flex; justify-content: space-between; align-items: center;">
        <img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/ISRO_Logo.png" style="width: 20%; margin-right: auto;">
        <img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/SAC_Logo.png" style="width: 20%; margin-left: auto;">
    </div>
    """,
    unsafe_allow_html=True,
)
st.markdown(
    f"""
    <div style="display: flex; flex-direction: column; align-items: center;">
        <img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/SATRANG.png" style="width: 30%;">
        <h3 style="text-align: center; margin: 0;">( Spatial and Temporal Aggregation for Remote-sensing Analysis of GEE Data )</h3>
    </div>
    <hr>
    """,
    unsafe_allow_html=True,
)

# Authenticate and initialize Earth Engine
earthengine_credentials = os.environ.get("EE_Authentication")
os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
    f.write(earthengine_credentials)
ee.Initialize(project='ee-yashsacisro24')

# Helper function to get reducer
def get_reducer(reducer_name):
    reducers = {
        'mean': ee.Reducer.mean(),
        'sum': ee.Reducer.sum(),
        'median': ee.Reducer.median(),
        'min': ee.Reducer.min(),
        'max': ee.Reducer.max(),
        'count': ee.Reducer.count(),
    }
    return reducers.get(reducer_name.lower(), ee.Reducer.mean())

# Function to convert geometry to Earth Engine format
def convert_to_ee_geometry(geometry):
    if isinstance(geometry, base.BaseGeometry):
        if geometry.is_valid:
            geojson = geometry.__geo_interface__
            return ee.Geometry(geojson)
        else:
            raise ValueError("Invalid geometry: The polygon geometry is not valid.")
    elif isinstance(geometry, dict) or isinstance(geometry, str):
        try:
            if isinstance(geometry, str):
                geometry = json.loads(geometry)
            if 'type' in geometry and 'coordinates' in geometry:
                return ee.Geometry(geometry)
            else:
                raise ValueError("GeoJSON format is invalid.")
        except Exception as e:
            raise ValueError(f"Error parsing GeoJSON: {e}")
    elif isinstance(geometry, str) and geometry.lower().endswith(".kml"):
        try:
            tree = XET.parse(geometry)
            kml_root = tree.getroot()
            kml_namespace = {'kml': 'http://www.opengis.net/kml/2.2'}
            coordinates = kml_root.findall(".//kml:coordinates", kml_namespace)
            if coordinates:
                coords_text = coordinates[0].text.strip()
                coords = coords_text.split()
                coords = [tuple(map(float, coord.split(','))) for coord in coords]
                geojson = {"type": "Polygon", "coordinates": [coords]}
                return ee.Geometry(geojson)
            else:
                raise ValueError("KML does not contain valid coordinates.")
        except Exception as e:
            raise ValueError(f"Error parsing KML: {e}")
    else:
        raise ValueError("Unsupported geometry input type. Supported types are Shapely, GeoJSON, and KML.")

# Function to calculate custom formula
def calculate_custom_formula(image, geometry, selected_bands, custom_formula, reducer_choice, scale=30):
    try:
        band_values = {}
        band_names = image.bandNames().getInfo()
        for band in selected_bands:
            if band not in band_names:
                raise ValueError(f"Band '{band}' not found in the dataset.")
            band_values[band] = image.select(band)
        reducer = get_reducer(reducer_choice)
        reduced_values = {}
        for band in selected_bands:
            value = band_values[band].reduceRegion(
                reducer=reducer,
                geometry=geometry,
                scale=scale
            ).get(band).getInfo()
            reduced_values[band] = float(value if value is not None else 0)
        formula = custom_formula
        for band in selected_bands:
            formula = formula.replace(band, str(reduced_values[band]))
        result = eval(formula, {"__builtins__": {}}, reduced_values)
        if not isinstance(result, (int, float)):
            raise ValueError("Formula did not result in a numeric value.")
        return ee.Image.constant(result).rename('custom_result')
    except ZeroDivisionError:
        st.error("Error: Division by zero in the formula.")
        return ee.Image(0).rename('custom_result').set('error', 'Division by zero')
    except SyntaxError:
        st.error(f"Error: Invalid syntax in formula '{custom_formula}'.")
        return ee.Image(0).rename('custom_result').set('error', 'Invalid syntax')
    except ValueError as e:
        st.error(f"Error: {str(e)}")
        return ee.Image(0).rename('custom_result').set('error', str(e))
    except Exception as e:
        st.error(f"Unexpected error: {e}")
        return ee.Image(0).rename('custom_result').set('error', str(e))

# Aggregation functions
def aggregate_data_custom(collection):
    collection = collection.map(lambda image: image.set('day', ee.Date(image.get('system:time_start')).format('YYYY-MM-dd')))
    grouped_by_day = collection.aggregate_array('day').distinct()
    def calculate_daily_mean(day):
        daily_collection = collection.filter(ee.Filter.eq('day', day))
        daily_mean = daily_collection.mean()
        return daily_mean.set('day', day)
    daily_images = ee.List(grouped_by_day.map(calculate_daily_mean))
    return ee.ImageCollection(daily_images)

def aggregate_data_weekly(collection):
    def set_week_start(image):
        date = ee.Date(image.get('system:time_start'))
        days_since_week_start = date.getRelative('day', 'week')
        offset = ee.Number(days_since_week_start).multiply(-1)
        week_start = date.advance(offset, 'day')
        return image.set('week_start', week_start.format('YYYY-MM-dd'))
    collection = collection.map(set_week_start)
    grouped_by_week = collection.aggregate_array('week_start').distinct()
    def calculate_weekly_mean(week_start):
        weekly_collection = collection.filter(ee.Filter.eq('week_start', week_start))
        weekly_mean = weekly_collection.mean()
        return weekly_mean.set('week_start', week_start)
    weekly_images = ee.List(grouped_by_week.map(calculate_weekly_mean))
    return ee.ImageCollection(weekly_images)

def aggregate_data_monthly(collection, start_date, end_date):
    collection = collection.filterDate(start_date, end_date)
    collection = collection.map(lambda image: image.set('month', ee.Date(image.get('system:time_start')).format('YYYY-MM')))
    grouped_by_month = collection.aggregate_array('month').distinct()
    def calculate_monthly_mean(month):
        monthly_collection = collection.filter(ee.Filter.eq('month', month))
        monthly_mean = monthly_collection.mean()
        return monthly_mean.set('month', month)
    monthly_images = ee.List(grouped_by_month.map(calculate_monthly_mean))
    return ee.ImageCollection(monthly_images)

def aggregate_data_yearly(collection):
    collection = collection.map(lambda image: image.set('year', ee.Date(image.get('system:time_start')).format('YYYY')))
    grouped_by_year = collection.aggregate_array('year').distinct()
    def calculate_yearly_mean(year):
        yearly_collection = collection.filter(ee.Filter.eq('year', year))
        yearly_mean = yearly_collection.mean()
        return yearly_mean.set('year', year)
    yearly_images = ee.List(grouped_by_year.map(calculate_yearly_mean))
    return ee.ImageCollection(yearly_images)

# Worker function for processing a single geometry
def process_single_geometry(row, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, custom_formula, kernel_size=None, include_boundary=None):
    if shape_type.lower() == "point":
        latitude = row.get('latitude')
        longitude = row.get('longitude')
        if pd.isna(latitude) or pd.isna(longitude):
            return None  # Skip invalid points
        location_name = row.get('name', f"Location_{row.name}")
        if kernel_size == "3x3 Kernel":
            buffer_size = 45  # 90m x 90m
            roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds()
        elif kernel_size == "5x5 Kernel":
            buffer_size = 75  # 150m x 150m
            roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds()
        else:  # Point
            roi = ee.Geometry.Point([longitude, latitude])
    elif shape_type.lower() == "polygon":
        polygon_geometry = row.get('geometry')
        location_name = row.get('name', f"Polygon_{row.name}")
        try:
            roi = convert_to_ee_geometry(polygon_geometry)
            if not include_boundary:
                roi = roi.buffer(-30).bounds()
        except ValueError:
            return None  # Skip invalid polygons

    # Filter and aggregate the image collection
    collection = ee.ImageCollection(dataset_id) \
        .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
        .filterBounds(roi)

    if aggregation_period.lower() == 'custom (start date to end date)':
        collection = aggregate_data_custom(collection)
    elif aggregation_period.lower() == 'weekly':
        collection = aggregate_data_weekly(collection)
    elif aggregation_period.lower() == 'monthly':
        collection = aggregate_data_monthly(collection, start_date_str, end_date_str)
    elif aggregation_period.lower() == 'yearly':
        collection = aggregate_data_yearly(collection)

    # Process each image in the collection
    image_list = collection.toList(collection.size())
    processed_weeks = set()
    aggregated_results = []

    for i in range(image_list.size().getInfo()):
        image = ee.Image(image_list.get(i))
        if aggregation_period.lower() == 'custom (start date to end date)':
            timestamp = image.get('day')
            period_label = 'Date'
            date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo()
        elif aggregation_period.lower() == 'weekly':
            timestamp = image.get('week_start')
            period_label = 'Week'
            date = ee.String(timestamp).getInfo()
            if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or 
                pd.to_datetime(date) > pd.to_datetime(end_date_str) or 
                date in processed_weeks):
                continue
            processed_weeks.add(date)
        elif aggregation_period.lower() == 'monthly':
            timestamp = image.get('month')
            period_label = 'Month'
            date = ee.Date(timestamp).format('YYYY-MM').getInfo()
        elif aggregation_period.lower() == 'yearly':
            timestamp = image.get('year')
            period_label = 'Year'
            date = ee.Date(timestamp).format('YYYY').getInfo()

        index_image = calculate_custom_formula(image, roi, selected_bands, custom_formula, reducer_choice, scale=30)
        try:
            index_value = index_image.reduceRegion(
                reducer=get_reducer(reducer_choice),
                geometry=roi,
                scale=30
            ).get('custom_result')
            calculated_value = index_value.getInfo()
            if isinstance(calculated_value, (int, float)):
                result = {
                    'Location Name': location_name,
                    period_label: date,
                    'Start Date': start_date_str,
                    'End Date': end_date_str,
                    'Calculated Value': calculated_value
                }
                if shape_type.lower() == 'point':
                    result['Latitude'] = latitude
                    result['Longitude'] = longitude
                aggregated_results.append(result)
        except Exception as e:
            st.error(f"Error retrieving value for {location_name}: {e}")

    return aggregated_results

# Main processing function
def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, custom_formula="", kernel_size=None, include_boundary=None):
    aggregated_results = []
    total_steps = len(locations_df)
    progress_bar = st.progress(0)
    progress_text = st.empty()
    
    start_time = time.time()  # Start timing the process
    with ThreadPoolExecutor(max_workers=10) as executor:
        futures = []
        for idx, row in locations_df.iterrows():
            future = executor.submit(
                process_single_geometry,
                row,
                start_date_str,
                end_date_str,
                dataset_id,
                selected_bands,
                reducer_choice,
                shape_type,
                aggregation_period,
                custom_formula,
                kernel_size,
                include_boundary
            )
            futures.append(future)
        
        completed = 0
        for future in as_completed(futures):
            result = future.result()
            if result:
                aggregated_results.extend(result)
            completed += 1
            progress_percentage = completed / total_steps
            progress_bar.progress(progress_percentage)
            progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
    
    # End timing the process
    end_time = time.time()
    processing_time = end_time - start_time  # Calculate total processing time
    
    if aggregated_results:
        result_df = pd.DataFrame(aggregated_results)
        if aggregation_period.lower() == 'custom (start date to end date)':
            agg_dict = {
                'Start Date': 'first',
                'End Date': 'first',
                'Calculated Value': 'mean'
            }
            if shape_type.lower() == 'point':
                agg_dict['Latitude'] = 'first'
                agg_dict['Longitude'] = 'first'
            aggregated_output = result_df.groupby('Location Name').agg(agg_dict).reset_index()
            aggregated_output.rename(columns={'Calculated Value': 'Aggregated Value'}, inplace=True)
            return aggregated_output.to_dict(orient='records'), processing_time  # Return processing time
        else:
            return result_df.to_dict(orient='records'), processing_time 
    return [], processing_time  

# Streamlit App Logic
st.markdown("<h5>Image Collection</h5>", unsafe_allow_html=True)
imagery_base = st.selectbox("Select Imagery Base", ["Sentinel", "Landsat", "MODIS", "Custom Input"], index=0)

# Initialize data as an empty dictionary
data = {}

if imagery_base == "Sentinel":
    dataset_file = "sentinel_datasets.json"
    try:
        with open(dataset_file) as f:
            data = json.load(f)
    except FileNotFoundError:
        st.error(f"Dataset file '{dataset_file}' not found.")
        data = {}
elif imagery_base == "Landsat":
    dataset_file = "landsat_datasets.json"
    try:
        with open(dataset_file) as f:
            data = json.load(f)
    except FileNotFoundError:
        st.error(f"Dataset file '{dataset_file}' not found.")
        data = {}
elif imagery_base == "MODIS":
    dataset_file = "modis_datasets.json"
    try:
        with open(dataset_file) as f:
            data = json.load(f)
    except FileNotFoundError:
        st.error(f"Dataset file '{dataset_file}' not found.")
        data = {}
elif imagery_base == "Custom Input":
    custom_dataset_id = st.text_input("Enter Custom Earth Engine Dataset ID (e.g., AHN/AHN4)", value="")
    if custom_dataset_id:
        try:
            if custom_dataset_id.startswith("ee.ImageCollection("):
                custom_dataset_id = custom_dataset_id.replace("ee.ImageCollection('", "").replace("')", "")
            collection = ee.ImageCollection(custom_dataset_id)
            band_names = collection.first().bandNames().getInfo()
            data = {
                f"Custom Dataset: {custom_dataset_id}": {
                    "sub_options": {custom_dataset_id: f"Custom Dataset ({custom_dataset_id})"},
                    "bands": {custom_dataset_id: band_names}
                }
            }
            st.write(f"Fetched bands for {custom_dataset_id}: {', '.join(band_names)}")
        except Exception as e:
            st.error(f"Error fetching dataset: {str(e)}. Please check the dataset ID and ensure it's valid in Google Earth Engine.")
            data = {}
    else:
        st.warning("Please enter a custom dataset ID to proceed.")
        data = {}

if not data:
    st.error("No valid dataset available. Please check your inputs.")
    st.stop()

st.markdown("<hr><h5><b>{}</b></h5>".format(imagery_base), unsafe_allow_html=True)

main_selection = st.selectbox(f"Select {imagery_base} Dataset Category", list(data.keys()))

sub_selection = None
dataset_id = None

if main_selection:
    sub_options = data[main_selection]["sub_options"]
    sub_selection = st.selectbox(f"Select Specific {imagery_base} Dataset ID", list(sub_options.keys()))
    if sub_selection:
        st.write(f"You selected: {main_selection} -> {sub_options[sub_selection]}")
        st.write(f"Dataset ID: {sub_selection}")
        dataset_id = sub_selection

st.markdown("<hr><h5><b>Earth Engine Index Calculator</b></h5>", unsafe_allow_html=True)

if main_selection and sub_selection:
    dataset_bands = data[main_selection]["bands"].get(sub_selection, [])
    st.write(f"Available Bands for {sub_options[sub_selection]}: {', '.join(dataset_bands)}")
    selected_bands = st.multiselect(
        "Select 1 or 2 Bands for Calculation",
        options=dataset_bands,
        default=[dataset_bands[0]] if dataset_bands else [],
        help=f"Select 1 or 2 bands from: {', '.join(dataset_bands)}"
    )

    if len(selected_bands) < 1:
        st.warning("Please select at least one band.")
        st.stop()

    if selected_bands:
        if len(selected_bands) == 1:
            default_formula = f"{selected_bands[0]}"
            example = f"'{selected_bands[0]} * 2' or '{selected_bands[0]} + 1'"
        else:
            default_formula = f"({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})"
            example = f"'{selected_bands[0]} * {selected_bands[1]} / 2' or '({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})'"
        custom_formula = st.text_input(
            "Enter Custom Formula (e.g (B8 - B4) / (B8 + B4) , B4*B3/2)",
            value=default_formula,
            help=f"Use only these bands: {', '.join(selected_bands)}. Examples: {example}"
        )

        def validate_formula(formula, selected_bands):
            allowed_chars = set(" +-*/()0123456789.")
            terms = re.findall(r'[a-zA-Z][a-zA-Z0-9_]*', formula)
            invalid_terms = [term for term in terms if term not in selected_bands]
            if invalid_terms:
                return False, f"Invalid terms in formula: {', '.join(invalid_terms)}. Use only {', '.join(selected_bands)}."
            if not all(char in allowed_chars or char in ''.join(selected_bands) for char in formula):
                return False, "Formula contains invalid characters. Use only bands, numbers, and operators (+, -, *, /, ())"
            return True, ""

        is_valid, error_message = validate_formula(custom_formula, selected_bands)
        if not is_valid:
            st.error(error_message)
            st.stop()
        elif not custom_formula:
            st.warning("Please enter a custom formula to proceed.")
            st.stop()

        st.write(f"Custom Formula: {custom_formula}")

reducer_choice = st.selectbox(
    "Select Reducer (e.g, mean , sum , median , min , max , count)",
    ['mean', 'sum', 'median', 'min', 'max', 'count'],
    index=0
)

start_date = st.date_input("Start Date", value=pd.to_datetime('2024-11-01'))
end_date = st.date_input("End Date", value=pd.to_datetime('2024-12-01'))
start_date_str = start_date.strftime('%Y-%m-%d')
end_date_str = end_date.strftime('%Y-%m-%d')

aggregation_period = st.selectbox(
    "Select Aggregation Period (e.g, Custom(Start Date to End Date) , Weekly , Monthly , Yearly)",
    ["Custom (Start Date to End Date)", "Weekly", "Monthly", "Yearly"],
    index=0
)

shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"])

kernel_size = None
include_boundary = None

if shape_type.lower() == "point":
    kernel_size = st.selectbox(
        "Select Calculation Area(e.g, Point , 3x3 Kernel , 5x5 Kernel)",
        ["Point", "3x3 Kernel", "5x5 Kernel"],
        index=0,
        help="Choose 'Point' for exact point calculation, or a kernel size for area averaging."
    )
elif shape_type.lower() == "polygon":
    include_boundary = st.checkbox(
        "Include Boundary Pixels",
        value=True,
        help="Check to include pixels on the polygon boundary; uncheck to exclude them."
    )

file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
locations_df = pd.DataFrame()

# if file_upload is not None:
#     if shape_type.lower() == "point":
#         if file_upload.name.endswith('.csv'):
#             locations_df = pd.read_csv(file_upload)
#         elif file_upload.name.endswith('.geojson'):
#             locations_df = gpd.read_file(file_upload)
#         elif file_upload.name.endswith('.kml'):
#             kml_string = file_upload.read().decode('utf-8')
#             try:
#                 root = XET.fromstring(kml_string)
#                 ns = {'kml': 'http://www.opengis.net/kml/2.2'}
#                 points = []
#                 for placemark in root.findall('.//kml:Placemark', ns):
#                     name = placemark.findtext('kml:name', default=f"Point_{len(points)}", namespaces=ns)
#                     coords_elem = placemark.find('.//kml:Point/kml:coordinates', ns)
#                     if coords_elem is not None:
#                         coords_text = coords_elem.text.strip()
#                         coords = [c.strip() for c in coords_text.split(',')]
#                         if len(coords) >= 2:
#                             lon, lat = float(coords[0]), float(coords[1])
#                             points.append({'name': name, 'geometry': f"POINT ({lon} {lat})"})
#                 if not points:
#                     st.error("No valid Point data found in the KML file.")
#                 else:
#                     locations_df = gpd.GeoDataFrame(points, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in points]), crs="EPSG:4326")
#             except Exception as e:
#                 st.error(f"Error parsing KML file: {str(e)}")
#     elif shape_type.lower() == "polygon":
#         if file_upload.name.endswith('.csv'):
#             locations_df = pd.read_csv(file_upload)
#         elif file_upload.name.endswith('.geojson'):
#             locations_df = gpd.read_file(file_upload)
#         elif file_upload.name.endswith('.kml'):
#             kml_string = file_upload.read().decode('utf-8')
#             try:
#                 root = XET.fromstring(kml_string)
#                 ns = {'kml': 'http://www.opengis.net/kml/2.2'}
#                 polygons = []
#                 for placemark in root.findall('.//kml:Placemark', ns):
#                     name = placemark.findtext('kml:name', default=f"Polygon_{len(polygons)}", namespaces=ns)
#                     coords_elem = placemark.find('.//kml:Polygon//kml:coordinates', ns)
#                     if coords_elem is not None:
#                         coords_text = ' '.join(coords_elem.text.split())
#                         coord_pairs = [pair.split(',')[:2] for pair in coords_text.split() if pair]
#                         if len(coord_pairs) >= 4:
#                             coords_str = " ".join([f"{float(lon)} {float(lat)}" for lon, lat in coord_pairs])
#                             polygons.append({'name': name, 'geometry': f"POLYGON (({coords_str}))"})
#                 if not polygons:
#                     st.error("No valid Polygon data found in the KML file.")
#                 else:
#                     locations_df = gpd.GeoDataFrame(polygons, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in polygons]), crs="EPSG:4326")
#             except Exception as e:
#                 st.error(f"Error parsing KML file: {str(e)}")

#     # Display uploaded data preview and map
#     if not locations_df.empty:
#         st.write("Preview of Uploaded Data:")
#         st.dataframe(locations_df.head())

#         if 'geometry' in locations_df.columns:
#             if shape_type.lower() == "point":
#                 locations_df['latitude'] = locations_df['geometry'].y
#                 locations_df['longitude'] = locations_df['geometry'].x
#                 m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
#                 for _, row in locations_df.iterrows():
#                     latitude = row['latitude']
#                     longitude = row['longitude']
#                     if pd.isna(latitude) or pd.isna(longitude):
#                         continue
#                     m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
#                 st.write("Map of Uploaded Points:")
#                 m.to_streamlit()
#             elif shape_type.lower() == "polygon":
#                 centroid_lat = locations_df.geometry.centroid.y.mean()
#                 centroid_lon = locations_df.geometry.centroid.x.mean()
#                 m = leafmap.Map(center=[centroid_lat, centroid_lon], zoom=10)
#                 for _, row in locations_df.iterrows():
#                     polygon = row['geometry']
#                     if polygon.is_valid:
#                         gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=locations_df.crs)
#                         m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
#                 st.write("Map of Uploaded Polygons:")
#                 m.to_streamlit()

if file_upload is not None:
    # Read the user-uploaded file
    if shape_type.lower() == "point":
        if file_upload.name.endswith('.csv'):
            locations_df = pd.read_csv(file_upload)
        elif file_upload.name.endswith('.geojson'):
            locations_df = gpd.read_file(file_upload)
        elif file_upload.name.endswith('.kml'):
            # Parse KML file for point data
            kml_string = file_upload.read().decode('utf-8')
            try:
                # Use xml.etree.ElementTree with unique alias
                root = XET.fromstring(kml_string)
                ns = {'kml': 'http://www.opengis.net/kml/2.2'}
                points = []
                for placemark in root.findall('.//kml:Placemark', ns):
                    name = placemark.findtext('kml:name', default=f"Point_{len(points)}", namespaces=ns)
                    coords_elem = placemark.find('.//kml:Point/kml:coordinates', ns)
                    if coords_elem is not None:
                        coords_text = coords_elem.text.strip()
                        st.write(f"Debug: Point coordinates found - {coords_text}")  # Debug output
                        coords = [c.strip() for c in coords_text.split(',')]
                        if len(coords) >= 2:  # Ensure at least lon, lat
                            lon, lat = float(coords[0]), float(coords[1])
                            points.append({'name': name, 'geometry': f"POINT ({lon} {lat})"})
                if not points:
                    st.error("No valid Point data found in the KML file.")
                    locations_df = pd.DataFrame()
                else:
                    locations_df = gpd.GeoDataFrame(points, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in points]), crs="EPSG:4326")
            except Exception as e:
                st.error(f"Error parsing KML file: {str(e)}")
                locations_df = pd.DataFrame()
        else:
            st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
            locations_df = pd.DataFrame()

        if 'geometry' in locations_df.columns:
            if locations_df.geometry.geom_type.isin(['Polygon', 'MultiPolygon']).any():
                st.warning("The uploaded file contains polygon data. Please select 'Polygon' for processing.")
                st.stop()

        with st.spinner('Processing Map...'):
            if locations_df is not None and not locations_df.empty:
                if 'geometry' in locations_df.columns:
                    locations_df['latitude'] = locations_df['geometry'].y
                    locations_df['longitude'] = locations_df['geometry'].x

                if 'latitude' not in locations_df.columns or 'longitude' not in locations_df.columns:
                    st.error("Uploaded file is missing required 'latitude' or 'longitude' columns.")
                else:
                    st.write("Preview of the uploaded points data:")
                    st.dataframe(locations_df.head())
                    m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
                    for _, row in locations_df.iterrows():
                        latitude = row['latitude']
                        longitude = row['longitude']
                        if pd.isna(latitude) or pd.isna(longitude):
                            continue
                        m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
                    st.write("Map of Uploaded Points:")
                    m.to_streamlit()
                    st.session_state.map_data = m

    elif shape_type.lower() == "polygon":
        if file_upload.name.endswith('.csv'):
            locations_df = pd.read_csv(file_upload)
        elif file_upload.name.endswith('.geojson'):
            locations_df = gpd.read_file(file_upload)
        elif file_upload.name.endswith('.kml'):
            # Parse KML file for polygon data
            kml_string = file_upload.read().decode('utf-8')
            try:
                root = XET.fromstring(kml_string)
                ns = {'kml': 'http://www.opengis.net/kml/2.2'}
                polygons = []
                for placemark in root.findall('.//kml:Placemark', ns):
                    name = placemark.findtext('kml:name', default=f"Polygon_{len(polygons)}", namespaces=ns)
                    coords_elem = placemark.find('.//kml:Polygon//kml:coordinates', ns)
                    if coords_elem is not None:
                        coords_text = ' '.join(coords_elem.text.split())  # Normalize whitespace
                        st.write(f"Debug: Polygon coordinates found - {coords_text}")  # Debug output
                        coord_pairs = [pair.split(',')[:2] for pair in coords_text.split() if pair]
                        if len(coord_pairs) >= 4:  # Minimum 4 points for a closed polygon
                            coords_str = " ".join([f"{float(lon)} {float(lat)}" for lon, lat in coord_pairs])
                            polygons.append({'name': name, 'geometry': f"POLYGON (({coords_str}))"})
                if not polygons:
                    st.error("No valid Polygon data found in the KML file.")
                    locations_df = pd.DataFrame()
                else:
                    locations_df = gpd.GeoDataFrame(polygons, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in polygons]), crs="EPSG:4326")
            except Exception as e:
                st.error(f"Error parsing KML file: {str(e)}")
                locations_df = pd.DataFrame()
        else:
            st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
            locations_df = pd.DataFrame()

        if 'geometry' in locations_df.columns:
            if locations_df.geometry.geom_type.isin(['Point', 'MultiPoint']).any():
                st.warning("The uploaded file contains point data. Please select 'Point' for processing.")
                st.stop()

        with st.spinner('Processing Map...'):
            if locations_df is not None and not locations_df.empty:
                if 'geometry' not in locations_df.columns:
                    st.error("Uploaded file is missing required 'geometry' column.")
                else:
                    st.write("Preview of the uploaded polygons data:")
                    st.dataframe(locations_df.head())
                    centroid_lat = locations_df.geometry.centroid.y.mean()
                    centroid_lon = locations_df.geometry.centroid.x.mean()
                    m = leafmap.Map(center=[centroid_lat, centroid_lon], zoom=10)
                    for _, row in locations_df.iterrows():
                        polygon = row['geometry']
                        if polygon.is_valid:
                            gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=locations_df.crs)
                            m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
                    st.write("Map of Uploaded Polygons:")
                    m.to_streamlit()
                    st.session_state.map_data = m

# if st.button(f"Calculate {custom_formula}"):
#     if not locations_df.empty:
#         with st.spinner("Processing Data..."):
#         results, processing_time = process_aggregation(  # Capture results and processing time
#             locations_df,
#             start_date_str,
#             end_date_str,
#             dataset_id,
#             selected_bands,
#             reducer_choice,
#             shape_type,
#             aggregation_period,
#             custom_formula,
#             kernel_size,
#             include_boundary
#         )
#         if results:
#             result_df = pd.DataFrame(results)
#             st.write(f"Processed Results Table ({aggregation_period}) for Formula: {custom_formula}")
#             st.dataframe(result_df)
#             filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y%m%d')}_{end_date.strftime('%Y%m%d')}_{aggregation_period.lower()}.csv"
#             st.download_button(
#                 label="Download results as CSV",
#                 data=result_df.to_csv(index=False).encode('utf-8'),
#                 file_name=filename,
#                 mime='text/csv'
#             )
#             # Display processing time
#             st.success(f"Processing complete! Total processing time: {processing_time:.2f} seconds.")
#         else:
#             st.warning("No results were generated. Check your inputs or formula.")
#             st.info(f"Total processing time: {processing_time:.2f} seconds.")  # Show processing time even if no results
#     else:
#         st.warning("Please upload a file to proceed.")

if st.button(f"Calculate {custom_formula}"):
    if not locations_df.empty:
        # Use a spinner to indicate data processing
        with st.spinner("Processing Data..."):
            try:
                # Call the aggregation function and capture results and processing time
                results, processing_time = process_aggregation(
                    locations_df,
                    start_date_str,
                    end_date_str,
                    dataset_id,
                    selected_bands,
                    reducer_choice,
                    shape_type,
                    aggregation_period,
                    custom_formula,
                    kernel_size,
                    include_boundary
                )
                
                # Check if results were generated
                if results:
                    result_df = pd.DataFrame(results)
                    st.write(f"Processed Results Table ({aggregation_period}) for Formula: {custom_formula}")
                    st.dataframe(result_df)
                    
                    # Generate a downloadable CSV file
                    filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y%m%d')}_{end_date.strftime('%Y%m%d')}_{aggregation_period.lower()}.csv"
                    st.download_button(
                        label="Download results as CSV",
                        data=result_df.to_csv(index=False).encode('utf-8'),
                        file_name=filename,
                        mime='text/csv'
                    )
                    
                    # Display processing time
                    st.success(f"Processing complete! Total processing time: {processing_time:.2f} seconds.")
                else:
                    st.warning("No results were generated. Check your inputs or formula.")
                    st.info(f"Total processing time: {processing_time:.2f} seconds.")  # Show processing time even if no results
            
            except Exception as e:
                st.error(f"An error occurred during processing: {str(e)}")
    else:
        st.warning("Please upload a file to proceed.")