update app.py
Browse files
app.py
CHANGED
@@ -220,23 +220,28 @@ if file_upload:
|
|
220 |
result = calculate_custom_formula(image, roi, custom_formula)
|
221 |
|
222 |
if result:
|
|
|
223 |
calculated_value = result.getInfo()
|
224 |
-
|
|
|
225 |
|
226 |
# Store the result in session state
|
227 |
st.session_state.results.append({
|
228 |
'Location Name': location_name,
|
229 |
'Latitude': latitude,
|
230 |
'Longitude': longitude,
|
231 |
-
'Calculated Value': calculated_value #
|
232 |
})
|
233 |
|
|
|
|
|
|
|
234 |
# Convert results to DataFrame for download
|
235 |
if st.session_state.results:
|
236 |
result_df = pd.DataFrame(st.session_state.results)
|
237 |
st.download_button(
|
238 |
label="Download results as CSV",
|
239 |
data=result_df.to_csv(index=False).encode('utf-8'),
|
240 |
-
file_name=
|
241 |
mime='text/csv'
|
242 |
)
|
|
|
220 |
result = calculate_custom_formula(image, roi, custom_formula)
|
221 |
|
222 |
if result:
|
223 |
+
# Extract just the numeric value, not the dictionary with 'NDVI' label
|
224 |
calculated_value = result.getInfo()
|
225 |
+
# Display the result as a numeric value, not as a dictionary
|
226 |
+
st.write(f"Result for {location_name}: {calculated_value['NDVI'] if 'NDVI' in calculated_value else calculated_value}")
|
227 |
|
228 |
# Store the result in session state
|
229 |
st.session_state.results.append({
|
230 |
'Location Name': location_name,
|
231 |
'Latitude': latitude,
|
232 |
'Longitude': longitude,
|
233 |
+
'Calculated Value': calculated_value['NDVI'] if 'NDVI' in calculated_value else calculated_value # Only store the numeric value
|
234 |
})
|
235 |
|
236 |
+
# Generate the dynamic filename
|
237 |
+
filename = f"{main_selection}_{sub_selection}_{start_date.strftime('%Y/%m/%d')}_{end_date.strftime('%Y/%m/%d')}_{shape_type}.csv"
|
238 |
+
|
239 |
# Convert results to DataFrame for download
|
240 |
if st.session_state.results:
|
241 |
result_df = pd.DataFrame(st.session_state.results)
|
242 |
st.download_button(
|
243 |
label="Download results as CSV",
|
244 |
data=result_df.to_csv(index=False).encode('utf-8'),
|
245 |
+
file_name=filename,
|
246 |
mime='text/csv'
|
247 |
)
|