YashMK89 commited on
Commit
55bded4
·
verified ·
1 Parent(s): b4ef7c4

update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -11
app.py CHANGED
@@ -515,21 +515,29 @@ def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id,
515
  st.error("Custom formula cannot be empty. Please provide a formula.")
516
  return aggregated_results
517
 
518
- # Check if dataset_id is an ee.Image or ee.ImageCollection
 
 
 
 
 
 
 
 
519
  try:
520
- dataset = ee.Image(dataset_id)
521
- is_image = True
522
- # Try to get the nominal scale from the dataset (default to 30m if unavailable)
523
- try:
524
- scale = dataset.projection().nominalScale().getInfo()
525
- except:
526
- scale = 30
527
- st.warning(f"Could not determine nominal scale for {dataset_id}. Using default scale of 30m.")
528
  except:
 
 
 
 
529
  dataset = ee.ImageCollection(dataset_id)
530
  is_image = False
531
- scale = 30
532
-
 
 
 
533
  total_steps = len(locations_df)
534
  progress_bar = st.progress(0)
535
  progress_text = st.empty()
 
515
  st.error("Custom formula cannot be empty. Please provide a formula.")
516
  return aggregated_results
517
 
518
+ # Initialize is_image and scale with default values
519
+ is_image = False # Default to False, will be updated based on dataset type
520
+ scale = 30 # Default scale, will be overridden for ee.Image if possible
521
+
522
+ # Check if dataset_id is an ee.Image or ee.ImageCollection
523
+ try:
524
+ dataset = ee.Image(dataset_id)
525
+ is_image = True
526
+ # Try to get the nominal scale from the dataset
527
  try:
528
+ scale = dataset.projection().nominalScale().getInfo()
 
 
 
 
 
 
 
529
  except:
530
+ st.warning(f"Could not determine nominal scale for {dataset_id}. Using default scale of 30m.")
531
+ scale = 30
532
+ except:
533
+ try:
534
  dataset = ee.ImageCollection(dataset_id)
535
  is_image = False
536
+ scale = 30 # Default scale for ImageCollections
537
+ except Exception as e:
538
+ st.error(f"Invalid dataset ID '{dataset_id}': {str(e)}. Must be a valid ee.Image or ee.ImageCollection.")
539
+ return aggregated_results
540
+
541
  total_steps = len(locations_df)
542
  progress_bar = st.progress(0)
543
  progress_text = st.empty()