import streamlit as st
import json
import ee
import os
import pandas as pd
import geopandas as gpd
from datetime import datetime
import leafmap.foliumap as leafmap
import re
from shapely.geometry import base
from xml.etree import ElementTree as XET
from concurrent.futures import ThreadPoolExecutor, as_completed
import time
# Set up the page layout
st.set_page_config(layout="wide")
# Custom button styling
m = st.markdown(
"""
""",
unsafe_allow_html=True,
)
# Logo and Title
st.write(
f"""
""",
unsafe_allow_html=True,
)
st.markdown(
f"""
( Spatial and Temporal Aggregation for Remote-sensing Analysis of GEE Data )
""",
unsafe_allow_html=True,
)
# Authenticate and initialize Earth Engine
earthengine_credentials = os.environ.get("EE_Authentication")
os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
f.write(earthengine_credentials)
ee.Initialize(project='ee-yashsacisro24')
# Helper function to get reducer
def get_reducer(reducer_name):
reducers = {
'mean': ee.Reducer.mean(),
'sum': ee.Reducer.sum(),
'median': ee.Reducer.median(),
'min': ee.Reducer.min(),
'max': ee.Reducer.max(),
'count': ee.Reducer.count(),
}
return reducers.get(reducer_name.lower(), ee.Reducer.mean())
# Function to convert geometry to Earth Engine format
def convert_to_ee_geometry(geometry):
if isinstance(geometry, base.BaseGeometry):
if geometry.is_valid:
geojson = geometry.__geo_interface__
return ee.Geometry(geojson)
else:
raise ValueError("Invalid geometry: The polygon geometry is not valid.")
elif isinstance(geometry, dict) or isinstance(geometry, str):
try:
if isinstance(geometry, str):
geometry = json.loads(geometry)
if 'type' in geometry and 'coordinates' in geometry:
return ee.Geometry(geometry)
else:
raise ValueError("GeoJSON format is invalid.")
except Exception as e:
raise ValueError(f"Error parsing GeoJSON: {e}")
elif isinstance(geometry, str) and geometry.lower().endswith(".kml"):
try:
tree = XET.parse(geometry)
kml_root = tree.getroot()
kml_namespace = {'kml': 'http://www.opengis.net/kml/2.2'}
coordinates = kml_root.findall(".//kml:coordinates", kml_namespace)
if coordinates:
coords_text = coordinates[0].text.strip()
coords = coords_text.split()
coords = [tuple(map(float, coord.split(','))) for coord in coords]
geojson = {"type": "Polygon", "coordinates": [coords]}
return ee.Geometry(geojson)
else:
raise ValueError("KML does not contain valid coordinates.")
except Exception as e:
raise ValueError(f"Error parsing KML: {e}")
else:
raise ValueError("Unsupported geometry input type. Supported types are Shapely, GeoJSON, and KML.")
# Function to calculate custom formula
def calculate_custom_formula(image, geometry, selected_bands, custom_formula, reducer_choice, scale=30):
try:
band_values = {}
band_names = image.bandNames().getInfo()
for band in selected_bands:
if band not in band_names:
raise ValueError(f"Band '{band}' not found in the dataset.")
band_values[band] = image.select(band)
reducer = get_reducer(reducer_choice)
reduced_values = {}
for band in selected_bands:
value = band_values[band].reduceRegion(
reducer=reducer,
geometry=geometry,
scale=scale
).get(band).getInfo()
reduced_values[band] = float(value if value is not None else 0)
formula = custom_formula
for band in selected_bands:
formula = formula.replace(band, str(reduced_values[band]))
result = eval(formula, {"__builtins__": {}}, reduced_values)
if not isinstance(result, (int, float)):
raise ValueError("Formula did not result in a numeric value.")
return ee.Image.constant(result).rename('custom_result')
except ZeroDivisionError:
st.error("Error: Division by zero in the formula.")
return ee.Image(0).rename('custom_result').set('error', 'Division by zero')
except SyntaxError:
st.error(f"Error: Invalid syntax in formula '{custom_formula}'.")
return ee.Image(0).rename('custom_result').set('error', 'Invalid syntax')
except ValueError as e:
st.error(f"Error: {str(e)}")
return ee.Image(0).rename('custom_result').set('error', str(e))
except Exception as e:
st.error(f"Unexpected error: {e}")
return ee.Image(0).rename('custom_result').set('error', str(e))
# Aggregation functions
def aggregate_data_custom(collection):
collection = collection.map(lambda image: image.set('day', ee.Date(image.get('system:time_start')).format('YYYY-MM-dd')))
grouped_by_day = collection.aggregate_array('day').distinct()
def calculate_daily_mean(day):
daily_collection = collection.filter(ee.Filter.eq('day', day))
daily_mean = daily_collection.mean()
return daily_mean.set('day', day)
daily_images = ee.List(grouped_by_day.map(calculate_daily_mean))
return ee.ImageCollection(daily_images)
def aggregate_data_weekly(collection):
def set_week_start(image):
date = ee.Date(image.get('system:time_start'))
days_since_week_start = date.getRelative('day', 'week')
offset = ee.Number(days_since_week_start).multiply(-1)
week_start = date.advance(offset, 'day')
return image.set('week_start', week_start.format('YYYY-MM-dd'))
collection = collection.map(set_week_start)
grouped_by_week = collection.aggregate_array('week_start').distinct()
def calculate_weekly_mean(week_start):
weekly_collection = collection.filter(ee.Filter.eq('week_start', week_start))
weekly_mean = weekly_collection.mean()
return weekly_mean.set('week_start', week_start)
weekly_images = ee.List(grouped_by_week.map(calculate_weekly_mean))
return ee.ImageCollection(weekly_images)
def aggregate_data_monthly(collection, start_date, end_date):
collection = collection.filterDate(start_date, end_date)
collection = collection.map(lambda image: image.set('month', ee.Date(image.get('system:time_start')).format('YYYY-MM')))
grouped_by_month = collection.aggregate_array('month').distinct()
def calculate_monthly_mean(month):
monthly_collection = collection.filter(ee.Filter.eq('month', month))
monthly_mean = monthly_collection.mean()
return monthly_mean.set('month', month)
monthly_images = ee.List(grouped_by_month.map(calculate_monthly_mean))
return ee.ImageCollection(monthly_images)
def aggregate_data_yearly(collection):
collection = collection.map(lambda image: image.set('year', ee.Date(image.get('system:time_start')).format('YYYY')))
grouped_by_year = collection.aggregate_array('year').distinct()
def calculate_yearly_mean(year):
yearly_collection = collection.filter(ee.Filter.eq('year', year))
yearly_mean = yearly_collection.mean()
return yearly_mean.set('year', year)
yearly_images = ee.List(grouped_by_year.map(calculate_yearly_mean))
return ee.ImageCollection(yearly_images)
# Worker function for processing a single geometry
def process_single_geometry(row, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, custom_formula, kernel_size=None, include_boundary=None):
if shape_type.lower() == "point":
latitude = row.get('latitude')
longitude = row.get('longitude')
if pd.isna(latitude) or pd.isna(longitude):
return None # Skip invalid points
location_name = row.get('name', f"Location_{row.name}")
if kernel_size == "3x3 Kernel":
buffer_size = 45 # 90m x 90m
roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds()
elif kernel_size == "5x5 Kernel":
buffer_size = 75 # 150m x 150m
roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds()
else: # Point
roi = ee.Geometry.Point([longitude, latitude])
elif shape_type.lower() == "polygon":
polygon_geometry = row.get('geometry')
location_name = row.get('name', f"Polygon_{row.name}")
try:
roi = convert_to_ee_geometry(polygon_geometry)
if not include_boundary:
roi = roi.buffer(-30).bounds()
except ValueError:
return None # Skip invalid polygons
# Filter and aggregate the image collection
collection = ee.ImageCollection(dataset_id) \
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
.filterBounds(roi)
if aggregation_period.lower() == 'custom (start date to end date)':
collection = aggregate_data_custom(collection)
elif aggregation_period.lower() == 'weekly':
collection = aggregate_data_weekly(collection)
elif aggregation_period.lower() == 'monthly':
collection = aggregate_data_monthly(collection, start_date_str, end_date_str)
elif aggregation_period.lower() == 'yearly':
collection = aggregate_data_yearly(collection)
# Process each image in the collection
image_list = collection.toList(collection.size())
processed_weeks = set()
aggregated_results = []
for i in range(image_list.size().getInfo()):
image = ee.Image(image_list.get(i))
if aggregation_period.lower() == 'custom (start date to end date)':
timestamp = image.get('day')
period_label = 'Date'
date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo()
elif aggregation_period.lower() == 'weekly':
timestamp = image.get('week_start')
period_label = 'Week'
date = ee.String(timestamp).getInfo()
if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or
pd.to_datetime(date) > pd.to_datetime(end_date_str) or
date in processed_weeks):
continue
processed_weeks.add(date)
elif aggregation_period.lower() == 'monthly':
timestamp = image.get('month')
period_label = 'Month'
date = ee.Date(timestamp).format('YYYY-MM').getInfo()
elif aggregation_period.lower() == 'yearly':
timestamp = image.get('year')
period_label = 'Year'
date = ee.Date(timestamp).format('YYYY').getInfo()
index_image = calculate_custom_formula(image, roi, selected_bands, custom_formula, reducer_choice, scale=30)
try:
index_value = index_image.reduceRegion(
reducer=get_reducer(reducer_choice),
geometry=roi,
scale=30
).get('custom_result')
calculated_value = index_value.getInfo()
if isinstance(calculated_value, (int, float)):
result = {
'Location Name': location_name,
period_label: date,
'Start Date': start_date_str,
'End Date': end_date_str,
'Calculated Value': calculated_value
}
if shape_type.lower() == 'point':
result['Latitude'] = latitude
result['Longitude'] = longitude
aggregated_results.append(result)
except Exception as e:
st.error(f"Error retrieving value for {location_name}: {e}")
return aggregated_results
# Main processing function
def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, custom_formula="", kernel_size=None, include_boundary=None):
aggregated_results = []
total_steps = len(locations_df)
progress_bar = st.progress(0)
progress_text = st.empty()
start_time = time.time() # Start timing the process
with ThreadPoolExecutor(max_workers=10) as executor:
futures = []
for idx, row in locations_df.iterrows():
future = executor.submit(
process_single_geometry,
row,
start_date_str,
end_date_str,
dataset_id,
selected_bands,
reducer_choice,
shape_type,
aggregation_period,
custom_formula,
kernel_size,
include_boundary
)
futures.append(future)
completed = 0
for future in as_completed(futures):
result = future.result()
if result:
aggregated_results.extend(result)
completed += 1
progress_percentage = completed / total_steps
progress_bar.progress(progress_percentage)
progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
# End timing the process
end_time = time.time()
processing_time = end_time - start_time # Calculate total processing time
if aggregated_results:
result_df = pd.DataFrame(aggregated_results)
if aggregation_period.lower() == 'custom (start date to end date)':
agg_dict = {
'Start Date': 'first',
'End Date': 'first',
'Calculated Value': 'mean'
}
if shape_type.lower() == 'point':
agg_dict['Latitude'] = 'first'
agg_dict['Longitude'] = 'first'
aggregated_output = result_df.groupby('Location Name').agg(agg_dict).reset_index()
aggregated_output.rename(columns={'Calculated Value': 'Aggregated Value'}, inplace=True)
return aggregated_output.to_dict(orient='records'), processing_time # Return processing time
else:
return result_df.to_dict(orient='records'), processing_time
return [], processing_time
# Streamlit App Logic
st.markdown("Image Collection
", unsafe_allow_html=True)
imagery_base = st.selectbox("Select Imagery Base", ["Sentinel", "Landsat", "MODIS", "Custom Input"], index=0)
# Initialize data as an empty dictionary
data = {}
if imagery_base == "Sentinel":
dataset_file = "sentinel_datasets.json"
try:
with open(dataset_file) as f:
data = json.load(f)
except FileNotFoundError:
st.error(f"Dataset file '{dataset_file}' not found.")
data = {}
elif imagery_base == "Landsat":
dataset_file = "landsat_datasets.json"
try:
with open(dataset_file) as f:
data = json.load(f)
except FileNotFoundError:
st.error(f"Dataset file '{dataset_file}' not found.")
data = {}
elif imagery_base == "MODIS":
dataset_file = "modis_datasets.json"
try:
with open(dataset_file) as f:
data = json.load(f)
except FileNotFoundError:
st.error(f"Dataset file '{dataset_file}' not found.")
data = {}
elif imagery_base == "Custom Input":
custom_dataset_id = st.text_input("Enter Custom Earth Engine Dataset ID (e.g., AHN/AHN4)", value="")
if custom_dataset_id:
try:
if custom_dataset_id.startswith("ee.ImageCollection("):
custom_dataset_id = custom_dataset_id.replace("ee.ImageCollection('", "").replace("')", "")
collection = ee.ImageCollection(custom_dataset_id)
band_names = collection.first().bandNames().getInfo()
data = {
f"Custom Dataset: {custom_dataset_id}": {
"sub_options": {custom_dataset_id: f"Custom Dataset ({custom_dataset_id})"},
"bands": {custom_dataset_id: band_names}
}
}
st.write(f"Fetched bands for {custom_dataset_id}: {', '.join(band_names)}")
except Exception as e:
st.error(f"Error fetching dataset: {str(e)}. Please check the dataset ID and ensure it's valid in Google Earth Engine.")
data = {}
else:
st.warning("Please enter a custom dataset ID to proceed.")
data = {}
if not data:
st.error("No valid dataset available. Please check your inputs.")
st.stop()
st.markdown("
{}
".format(imagery_base), unsafe_allow_html=True)
main_selection = st.selectbox(f"Select {imagery_base} Dataset Category", list(data.keys()))
sub_selection = None
dataset_id = None
if main_selection:
sub_options = data[main_selection]["sub_options"]
sub_selection = st.selectbox(f"Select Specific {imagery_base} Dataset ID", list(sub_options.keys()))
if sub_selection:
st.write(f"You selected: {main_selection} -> {sub_options[sub_selection]}")
st.write(f"Dataset ID: {sub_selection}")
dataset_id = sub_selection
st.markdown("
Earth Engine Index Calculator
", unsafe_allow_html=True)
if main_selection and sub_selection:
dataset_bands = data[main_selection]["bands"].get(sub_selection, [])
st.write(f"Available Bands for {sub_options[sub_selection]}: {', '.join(dataset_bands)}")
selected_bands = st.multiselect(
"Select 1 or 2 Bands for Calculation",
options=dataset_bands,
default=[dataset_bands[0]] if dataset_bands else [],
help=f"Select 1 or 2 bands from: {', '.join(dataset_bands)}"
)
if len(selected_bands) < 1:
st.warning("Please select at least one band.")
st.stop()
if selected_bands:
if len(selected_bands) == 1:
default_formula = f"{selected_bands[0]}"
example = f"'{selected_bands[0]} * 2' or '{selected_bands[0]} + 1'"
else:
default_formula = f"({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})"
example = f"'{selected_bands[0]} * {selected_bands[1]} / 2' or '({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})'"
custom_formula = st.text_input(
"Enter Custom Formula (e.g (B8 - B4) / (B8 + B4) , B4*B3/2)",
value=default_formula,
help=f"Use only these bands: {', '.join(selected_bands)}. Examples: {example}"
)
def validate_formula(formula, selected_bands):
allowed_chars = set(" +-*/()0123456789.")
terms = re.findall(r'[a-zA-Z][a-zA-Z0-9_]*', formula)
invalid_terms = [term for term in terms if term not in selected_bands]
if invalid_terms:
return False, f"Invalid terms in formula: {', '.join(invalid_terms)}. Use only {', '.join(selected_bands)}."
if not all(char in allowed_chars or char in ''.join(selected_bands) for char in formula):
return False, "Formula contains invalid characters. Use only bands, numbers, and operators (+, -, *, /, ())"
return True, ""
is_valid, error_message = validate_formula(custom_formula, selected_bands)
if not is_valid:
st.error(error_message)
st.stop()
elif not custom_formula:
st.warning("Please enter a custom formula to proceed.")
st.stop()
st.write(f"Custom Formula: {custom_formula}")
reducer_choice = st.selectbox(
"Select Reducer (e.g, mean , sum , median , min , max , count)",
['mean', 'sum', 'median', 'min', 'max', 'count'],
index=0
)
start_date = st.date_input("Start Date", value=pd.to_datetime('2024-11-01'))
end_date = st.date_input("End Date", value=pd.to_datetime('2024-12-01'))
start_date_str = start_date.strftime('%Y-%m-%d')
end_date_str = end_date.strftime('%Y-%m-%d')
aggregation_period = st.selectbox(
"Select Aggregation Period (e.g, Custom(Start Date to End Date) , Weekly , Monthly , Yearly)",
["Custom (Start Date to End Date)", "Weekly", "Monthly", "Yearly"],
index=0
)
shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"])
kernel_size = None
include_boundary = None
if shape_type.lower() == "point":
kernel_size = st.selectbox(
"Select Calculation Area(e.g, Point , 3x3 Kernel , 5x5 Kernel)",
["Point", "3x3 Kernel", "5x5 Kernel"],
index=0,
help="Choose 'Point' for exact point calculation, or a kernel size for area averaging."
)
elif shape_type.lower() == "polygon":
include_boundary = st.checkbox(
"Include Boundary Pixels",
value=True,
help="Check to include pixels on the polygon boundary; uncheck to exclude them."
)
file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
locations_df = pd.DataFrame()
# if file_upload is not None:
# if shape_type.lower() == "point":
# if file_upload.name.endswith('.csv'):
# locations_df = pd.read_csv(file_upload)
# elif file_upload.name.endswith('.geojson'):
# locations_df = gpd.read_file(file_upload)
# elif file_upload.name.endswith('.kml'):
# kml_string = file_upload.read().decode('utf-8')
# try:
# root = XET.fromstring(kml_string)
# ns = {'kml': 'http://www.opengis.net/kml/2.2'}
# points = []
# for placemark in root.findall('.//kml:Placemark', ns):
# name = placemark.findtext('kml:name', default=f"Point_{len(points)}", namespaces=ns)
# coords_elem = placemark.find('.//kml:Point/kml:coordinates', ns)
# if coords_elem is not None:
# coords_text = coords_elem.text.strip()
# coords = [c.strip() for c in coords_text.split(',')]
# if len(coords) >= 2:
# lon, lat = float(coords[0]), float(coords[1])
# points.append({'name': name, 'geometry': f"POINT ({lon} {lat})"})
# if not points:
# st.error("No valid Point data found in the KML file.")
# else:
# locations_df = gpd.GeoDataFrame(points, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in points]), crs="EPSG:4326")
# except Exception as e:
# st.error(f"Error parsing KML file: {str(e)}")
# elif shape_type.lower() == "polygon":
# if file_upload.name.endswith('.csv'):
# locations_df = pd.read_csv(file_upload)
# elif file_upload.name.endswith('.geojson'):
# locations_df = gpd.read_file(file_upload)
# elif file_upload.name.endswith('.kml'):
# kml_string = file_upload.read().decode('utf-8')
# try:
# root = XET.fromstring(kml_string)
# ns = {'kml': 'http://www.opengis.net/kml/2.2'}
# polygons = []
# for placemark in root.findall('.//kml:Placemark', ns):
# name = placemark.findtext('kml:name', default=f"Polygon_{len(polygons)}", namespaces=ns)
# coords_elem = placemark.find('.//kml:Polygon//kml:coordinates', ns)
# if coords_elem is not None:
# coords_text = ' '.join(coords_elem.text.split())
# coord_pairs = [pair.split(',')[:2] for pair in coords_text.split() if pair]
# if len(coord_pairs) >= 4:
# coords_str = " ".join([f"{float(lon)} {float(lat)}" for lon, lat in coord_pairs])
# polygons.append({'name': name, 'geometry': f"POLYGON (({coords_str}))"})
# if not polygons:
# st.error("No valid Polygon data found in the KML file.")
# else:
# locations_df = gpd.GeoDataFrame(polygons, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in polygons]), crs="EPSG:4326")
# except Exception as e:
# st.error(f"Error parsing KML file: {str(e)}")
# # Display uploaded data preview and map
# if not locations_df.empty:
# st.write("Preview of Uploaded Data:")
# st.dataframe(locations_df.head())
# if 'geometry' in locations_df.columns:
# if shape_type.lower() == "point":
# locations_df['latitude'] = locations_df['geometry'].y
# locations_df['longitude'] = locations_df['geometry'].x
# m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
# for _, row in locations_df.iterrows():
# latitude = row['latitude']
# longitude = row['longitude']
# if pd.isna(latitude) or pd.isna(longitude):
# continue
# m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
# st.write("Map of Uploaded Points:")
# m.to_streamlit()
# elif shape_type.lower() == "polygon":
# centroid_lat = locations_df.geometry.centroid.y.mean()
# centroid_lon = locations_df.geometry.centroid.x.mean()
# m = leafmap.Map(center=[centroid_lat, centroid_lon], zoom=10)
# for _, row in locations_df.iterrows():
# polygon = row['geometry']
# if polygon.is_valid:
# gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=locations_df.crs)
# m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
# st.write("Map of Uploaded Polygons:")
# m.to_streamlit()
if file_upload is not None:
# Read the user-uploaded file
if shape_type.lower() == "point":
if file_upload.name.endswith('.csv'):
locations_df = pd.read_csv(file_upload)
elif file_upload.name.endswith('.geojson'):
locations_df = gpd.read_file(file_upload)
elif file_upload.name.endswith('.kml'):
# Parse KML file for point data
kml_string = file_upload.read().decode('utf-8')
try:
# Use xml.etree.ElementTree with unique alias
root = XET.fromstring(kml_string)
ns = {'kml': 'http://www.opengis.net/kml/2.2'}
points = []
for placemark in root.findall('.//kml:Placemark', ns):
name = placemark.findtext('kml:name', default=f"Point_{len(points)}", namespaces=ns)
coords_elem = placemark.find('.//kml:Point/kml:coordinates', ns)
if coords_elem is not None:
coords_text = coords_elem.text.strip()
st.write(f"Debug: Point coordinates found - {coords_text}") # Debug output
coords = [c.strip() for c in coords_text.split(',')]
if len(coords) >= 2: # Ensure at least lon, lat
lon, lat = float(coords[0]), float(coords[1])
points.append({'name': name, 'geometry': f"POINT ({lon} {lat})"})
if not points:
st.error("No valid Point data found in the KML file.")
locations_df = pd.DataFrame()
else:
locations_df = gpd.GeoDataFrame(points, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in points]), crs="EPSG:4326")
except Exception as e:
st.error(f"Error parsing KML file: {str(e)}")
locations_df = pd.DataFrame()
else:
st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
locations_df = pd.DataFrame()
if 'geometry' in locations_df.columns:
if locations_df.geometry.geom_type.isin(['Polygon', 'MultiPolygon']).any():
st.warning("The uploaded file contains polygon data. Please select 'Polygon' for processing.")
st.stop()
with st.spinner('Processing Map...'):
if locations_df is not None and not locations_df.empty:
if 'geometry' in locations_df.columns:
locations_df['latitude'] = locations_df['geometry'].y
locations_df['longitude'] = locations_df['geometry'].x
if 'latitude' not in locations_df.columns or 'longitude' not in locations_df.columns:
st.error("Uploaded file is missing required 'latitude' or 'longitude' columns.")
else:
st.write("Preview of the uploaded points data:")
st.dataframe(locations_df.head())
m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
for _, row in locations_df.iterrows():
latitude = row['latitude']
longitude = row['longitude']
if pd.isna(latitude) or pd.isna(longitude):
continue
m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
st.write("Map of Uploaded Points:")
m.to_streamlit()
st.session_state.map_data = m
elif shape_type.lower() == "polygon":
if file_upload.name.endswith('.csv'):
locations_df = pd.read_csv(file_upload)
elif file_upload.name.endswith('.geojson'):
locations_df = gpd.read_file(file_upload)
elif file_upload.name.endswith('.kml'):
# Parse KML file for polygon data
kml_string = file_upload.read().decode('utf-8')
try:
root = XET.fromstring(kml_string)
ns = {'kml': 'http://www.opengis.net/kml/2.2'}
polygons = []
for placemark in root.findall('.//kml:Placemark', ns):
name = placemark.findtext('kml:name', default=f"Polygon_{len(polygons)}", namespaces=ns)
coords_elem = placemark.find('.//kml:Polygon//kml:coordinates', ns)
if coords_elem is not None:
coords_text = ' '.join(coords_elem.text.split()) # Normalize whitespace
st.write(f"Debug: Polygon coordinates found - {coords_text}") # Debug output
coord_pairs = [pair.split(',')[:2] for pair in coords_text.split() if pair]
if len(coord_pairs) >= 4: # Minimum 4 points for a closed polygon
coords_str = " ".join([f"{float(lon)} {float(lat)}" for lon, lat in coord_pairs])
polygons.append({'name': name, 'geometry': f"POLYGON (({coords_str}))"})
if not polygons:
st.error("No valid Polygon data found in the KML file.")
locations_df = pd.DataFrame()
else:
locations_df = gpd.GeoDataFrame(polygons, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in polygons]), crs="EPSG:4326")
except Exception as e:
st.error(f"Error parsing KML file: {str(e)}")
locations_df = pd.DataFrame()
else:
st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
locations_df = pd.DataFrame()
if 'geometry' in locations_df.columns:
if locations_df.geometry.geom_type.isin(['Point', 'MultiPoint']).any():
st.warning("The uploaded file contains point data. Please select 'Point' for processing.")
st.stop()
with st.spinner('Processing Map...'):
if locations_df is not None and not locations_df.empty:
if 'geometry' not in locations_df.columns:
st.error("Uploaded file is missing required 'geometry' column.")
else:
st.write("Preview of the uploaded polygons data:")
st.dataframe(locations_df.head())
centroid_lat = locations_df.geometry.centroid.y.mean()
centroid_lon = locations_df.geometry.centroid.x.mean()
m = leafmap.Map(center=[centroid_lat, centroid_lon], zoom=10)
for _, row in locations_df.iterrows():
polygon = row['geometry']
if polygon.is_valid:
gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=locations_df.crs)
m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
st.write("Map of Uploaded Polygons:")
m.to_streamlit()
st.session_state.map_data = m
# if st.button(f"Calculate {custom_formula}"):
# if not locations_df.empty:
# with st.spinner("Processing Data..."):
# results, processing_time = process_aggregation( # Capture results and processing time
# locations_df,
# start_date_str,
# end_date_str,
# dataset_id,
# selected_bands,
# reducer_choice,
# shape_type,
# aggregation_period,
# custom_formula,
# kernel_size,
# include_boundary
# )
# if results:
# result_df = pd.DataFrame(results)
# st.write(f"Processed Results Table ({aggregation_period}) for Formula: {custom_formula}")
# st.dataframe(result_df)
# filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y%m%d')}_{end_date.strftime('%Y%m%d')}_{aggregation_period.lower()}.csv"
# st.download_button(
# label="Download results as CSV",
# data=result_df.to_csv(index=False).encode('utf-8'),
# file_name=filename,
# mime='text/csv'
# )
# # Display processing time
# st.success(f"Processing complete! Total processing time: {processing_time:.2f} seconds.")
# else:
# st.warning("No results were generated. Check your inputs or formula.")
# st.info(f"Total processing time: {processing_time:.2f} seconds.") # Show processing time even if no results
# else:
# st.warning("Please upload a file to proceed.")
if st.button(f"Calculate {custom_formula}"):
if not locations_df.empty:
# Use a spinner to indicate data processing
with st.spinner("Processing Data..."):
try:
# Call the aggregation function and capture results and processing time
results, processing_time = process_aggregation(
locations_df,
start_date_str,
end_date_str,
dataset_id,
selected_bands,
reducer_choice,
shape_type,
aggregation_period,
custom_formula,
kernel_size,
include_boundary
)
# Check if results were generated
if results:
result_df = pd.DataFrame(results)
st.write(f"Processed Results Table ({aggregation_period}) for Formula: {custom_formula}")
st.dataframe(result_df)
# Generate a downloadable CSV file
filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y%m%d')}_{end_date.strftime('%Y%m%d')}_{aggregation_period.lower()}.csv"
st.download_button(
label="Download results as CSV",
data=result_df.to_csv(index=False).encode('utf-8'),
file_name=filename,
mime='text/csv'
)
# Display processing time
st.success(f"Processing complete! Total processing time: {processing_time:.2f} seconds.")
else:
st.warning("No results were generated. Check your inputs or formula.")
st.info(f"Total processing time: {processing_time:.2f} seconds.") # Show processing time even if no results
except Exception as e:
st.error(f"An error occurred during processing: {str(e)}")
else:
st.warning("Please upload a file to proceed.")