Spaces:
Build error
Build error
import argparse | |
import torch | |
from tqdm import tqdm | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from iGPT.models.husky_src.husky_chat import Blip2LlaMAForConditionalGeneration | |
def apply_delta(base_model_path, target_model_path, delta_path): | |
print("Loading base model") | |
base = AutoModelForCausalLM.from_pretrained(base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True) | |
print("Loading delta") | |
delta_tokenizer = AutoTokenizer.from_pretrained(delta_path, use_fast=False) | |
delta = Blip2LlaMAForConditionalGeneration.from_pretrained(delta_path, torch_dtype=torch.float16, low_cpu_mem_usage=True) | |
print("Applying delta") | |
for name, param in tqdm(delta.state_dict().items(), desc="Applying delta"): | |
if name.startswith('language_model'): | |
name = name[len('language_model.'):] | |
if param.data.shape == base.state_dict()[name].shape: | |
param.data += base.state_dict()[name] | |
else: | |
bparam = base.state_dict()[name] | |
param.data[:bparam.shape[0], :bparam.shape[1]] += bparam | |
else: | |
pass | |
print("Saving target model") | |
delta.save_pretrained(target_model_path) | |
delta_tokenizer.save_pretrained(target_model_path) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--base-model-path", type=str, required=True) | |
parser.add_argument("--target-model-path", type=str, required=True) | |
parser.add_argument("--delta-path", type=str, required=True) | |
args = parser.parse_args() | |
apply_delta(args.base_model_path, args.target_model_path, args.delta_path) | |
# srun -p INTERN2 --gres=gpu:0 python apply_delta.py --base-model-path "/mnt/petrelfs/share_data/wangweiyun/share_hf/llama-7b-hf" --target-model-path "/mnt/petrelfs/share_data/wangweiyun/share_hf/husky-7b-demo-v0_01" --delta-path "/mnt/petrelfs/share_data/wangweiyun/share_hf/husky-7b-delta-v0_01" |