Spaces:
Sleeping
Sleeping
YasirAbdali
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,36 @@
|
|
1 |
-
|
|
|
2 |
import streamlit as st
|
3 |
|
4 |
-
|
5 |
-
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import streamlit as st
|
4 |
|
5 |
+
# Load GPT-2 model and tokenizer
|
6 |
+
model_name = "gpt2"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
|
10 |
+
# Streamlit app
|
11 |
+
st.title("Blog Post Generator")
|
12 |
|
13 |
+
# User input
|
14 |
+
prompt = st.text_area("Enter a blog post topic or starting sentence:")
|
15 |
+
max_length = st.slider("Maximum length of generated text:", min_value=50, max_value=500, value=200, step=50)
|
16 |
+
|
17 |
+
if prompt:
|
18 |
+
# Tokenize input
|
19 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
20 |
+
|
21 |
+
# Generate text
|
22 |
+
with torch.no_grad():
|
23 |
+
output = model.generate(
|
24 |
+
input_ids,
|
25 |
+
max_length=max_length,
|
26 |
+
num_return_sequences=1,
|
27 |
+
no_repeat_ngram_size=2,
|
28 |
+
top_k=50,
|
29 |
+
top_p=0.95,
|
30 |
+
temperature=0.7
|
31 |
+
)
|
32 |
+
|
33 |
+
# Decode and display generated text
|
34 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
35 |
+
st.subheader("Generated Blog Post:")
|
36 |
+
st.write(generated_text)
|