Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,163 @@
|
|
1 |
-
from fastapi import FastAPI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
app = FastAPI()
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
@app.get("/")
|
6 |
def greet_json():
|
7 |
-
return {"
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from fastapi.responses import JSONResponse
|
3 |
+
from pydantic import BaseModel, Field
|
4 |
+
from typing import List, Optional
|
5 |
+
import os
|
6 |
+
import json
|
7 |
+
|
8 |
+
# ---- Requirements Models ----
|
9 |
+
|
10 |
+
class RequirementInfo(BaseModel):
|
11 |
+
"""Represents an extracted requirement info."""
|
12 |
+
context: str = Field(..., description="Context for the requirement.")
|
13 |
+
requirement: str = Field(..., description="The requirement itself.")
|
14 |
+
document: Optional[str] = Field('', description="The document the requirement is extracted from.")
|
15 |
+
|
16 |
+
class ReqGroupingCategory(BaseModel):
|
17 |
+
"""Represents the category of requirements grouped together."""
|
18 |
+
id: int = Field(..., description="ID of the grouping category")
|
19 |
+
title: str = Field(..., description="Title given to the grouping category")
|
20 |
+
requirements: List[RequirementInfo] = Field(
|
21 |
+
..., description="List of grouped requirements")
|
22 |
+
|
23 |
+
class ReqGroupingResponse(BaseModel):
|
24 |
+
categories: List[ReqGroupingCategory]
|
25 |
+
|
26 |
+
|
27 |
+
# ---- Solution Models ----
|
28 |
+
|
29 |
+
class SolutionModel(BaseModel):
|
30 |
+
Context: str = Field(..., description="Full context provided for this category.")
|
31 |
+
Requirements: List[str] = Field(..., description="List of each requirement as string.")
|
32 |
+
Problem_Description: str = Field(..., alias="Problem Description",
|
33 |
+
description="Description of the problem being solved.")
|
34 |
+
Solution_Description: str = Field(..., alias="Solution Description",
|
35 |
+
description="Detailed description of the solution.")
|
36 |
+
References: Optional[str] = Field('', description="References to documents used for the solution.")
|
37 |
+
|
38 |
+
class Config:
|
39 |
+
allow_population_by_field_name = True # Enables alias handling on input/output
|
40 |
+
|
41 |
+
class SolutionsResponse(BaseModel):
|
42 |
+
solutions: List[SolutionModel]
|
43 |
+
|
44 |
+
|
45 |
+
# ---- FastAPI app ----
|
46 |
|
47 |
app = FastAPI()
|
48 |
|
49 |
+
|
50 |
+
# ---- LLM Integration ----
|
51 |
+
|
52 |
+
def ask_llm(user_message, model='compound-beta', system_prompt="You are a helpful assistant"):
|
53 |
+
from groq import Groq # Import here so the app starts without the module if needed
|
54 |
+
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
55 |
+
|
56 |
+
response = client.chat.completions.create(
|
57 |
+
model=model,
|
58 |
+
messages=[
|
59 |
+
{
|
60 |
+
"role": "system",
|
61 |
+
"content": system_prompt
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"role": "user",
|
65 |
+
"content": user_message
|
66 |
+
}
|
67 |
+
],
|
68 |
+
stream=False,
|
69 |
+
)
|
70 |
+
ai_reply = response.choices[0].message.content
|
71 |
+
return ai_reply
|
72 |
+
|
73 |
+
solution_prompt = """You are an expert system designer. Your task is to find a solution that addresses as many of the provided requirements as possible, while carefully considering the given context. Browse internet for reliable sources.
|
74 |
+
|
75 |
+
Respond strictly in the following JSON format:
|
76 |
+
|
77 |
+
{
|
78 |
+
"Context": "<Insert the full context provided for this category>",
|
79 |
+
"Requirements": [
|
80 |
+
"<List each requirement clearly as a string item>"
|
81 |
+
],
|
82 |
+
"Problem Description": "<Describe the problem the solution is solving without introducing it>",
|
83 |
+
"Solution Description": "<Explain the proposed solution, detailing how it meets each of the specified requirements and aligns with the given context. Prioritize completeness and practicality.>",
|
84 |
+
"References": "<The references to the documents used to write the solution>"
|
85 |
+
}
|
86 |
+
|
87 |
+
text
|
88 |
+
⚠️ Rules:
|
89 |
+
|
90 |
+
Do not omit any part of the JSON structure.
|
91 |
+
|
92 |
+
Replace newline characters with \"\\n\" (double backslash-n for JSON)
|
93 |
+
|
94 |
+
Ensure all fields are present, even if empty.
|
95 |
+
|
96 |
+
The solution must aim to maximize requirement satisfaction while respecting the context.
|
97 |
+
|
98 |
+
Provide a clear and well-reasoned description of how your solution addresses each requirement.
|
99 |
+
"""
|
100 |
+
|
101 |
+
# ---- Main Endpoint ----
|
102 |
+
|
103 |
+
@app.post("/find_solutions", response_model=SolutionsResponse)
|
104 |
+
async def find_solutions(requirements: ReqGroupingResponse):
|
105 |
+
solutions = []
|
106 |
+
|
107 |
+
for category in requirements.categories:
|
108 |
+
category_title = category.title
|
109 |
+
category_requirements = category.requirements
|
110 |
+
|
111 |
+
# Compose the LLM prompt
|
112 |
+
problem_description = solution_prompt
|
113 |
+
problem_description += f"Category title: {category_title}\n"
|
114 |
+
|
115 |
+
context_list = []
|
116 |
+
requirement_list = []
|
117 |
+
for req_item in category_requirements:
|
118 |
+
context_list.append(f"- Context: {req_item.context}")
|
119 |
+
requirement_list.append(f"- Requirement: {req_item.requirement}")
|
120 |
+
|
121 |
+
problem_description += "Contexts:\n" + "\n".join(context_list) + "\n\n"
|
122 |
+
problem_description += "Requirements:\n" + "\n".join(requirement_list)
|
123 |
+
|
124 |
+
llm_response = ask_llm(problem_description)
|
125 |
+
print(f"Solution for '{category_title}' category:")
|
126 |
+
print(llm_response)
|
127 |
+
|
128 |
+
# Clean and parse the LLM response
|
129 |
+
try:
|
130 |
+
# Remove code blocks if present
|
131 |
+
cleaned = llm_response.strip()
|
132 |
+
if cleaned.startswith('```
|
133 |
+
cleaned = cleaned[7:]
|
134 |
+
if cleaned.startswith('```'):
|
135 |
+
cleaned = cleaned[3:]
|
136 |
+
if cleaned.endswith('```
|
137 |
+
cleaned = cleaned[:-3]
|
138 |
+
cleaned = cleaned.strip()
|
139 |
+
|
140 |
+
# Replace double backslashes with single if needed for parsing
|
141 |
+
cleaned = cleaned.replace('\\\\n', '\\n')
|
142 |
+
parsed = json.loads(cleaned)
|
143 |
+
|
144 |
+
# Use alias-aware population for SolutionModel
|
145 |
+
solution_obj = SolutionModel.parse_obj(parsed)
|
146 |
+
solutions.append(solution_obj)
|
147 |
+
except Exception as e:
|
148 |
+
# Append error info as a solution model (helps debug)
|
149 |
+
error_solution = SolutionModel(
|
150 |
+
Context="",
|
151 |
+
Requirements=[],
|
152 |
+
Problem_Description=f"Failed to parse LLM response: {str(e)}",
|
153 |
+
Solution_Description=f"Original LLM output: {llm_response}",
|
154 |
+
References=""
|
155 |
+
)
|
156 |
+
solutions.append(error_solution)
|
157 |
+
|
158 |
+
return SolutionsResponse(solutions=solutions)
|
159 |
+
|
160 |
+
|
161 |
@app.get("/")
|
162 |
def greet_json():
|
163 |
+
return {"Status": "OK!"}
|