YeBhoneLin10's picture
Upload app.py
342694d verified
raw
history blame
910 Bytes
import streamlit as st
import pickle
import pandas as pd
st.title("Classification the Iris")
sepal_length = st.text_input('Sepal_Length (cm)')
sepal_width = st.text_input('Sepal_Width (cm)')
petal_length = st.text_input('Petal_Length (cm)')
petal_width = st.text_input('Petal_Width (cm)')
dataframe = pd.DataFrame({"sepal length (cm)":[sepal_length],"sepal width (cm)":[sepal_width],'petal length (cm)':[petal_length],'petal width (cm)':[petal_width]})
if st.button('Prediction'):
with open('model.pkl', 'rb') as file:
loaded_model = pickle.load(file)
final_output = loaded_model.predict(dataframe)
if final_output == '0':
st.write("The output class is setosa")
elif final_output == '1':
st.write("The output class is versicolor")
elif final_output == '2':
st.write("The output class is virginica")