Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pickle | |
import pandas as pd | |
st.title("Classification the Iris") | |
sepal_length = st.text_input('Sepal_Length (cm)') | |
sepal_width = st.text_input('Sepal_Width (cm)') | |
petal_length = st.text_input('Petal_Length (cm)') | |
petal_width = st.text_input('Petal_Width (cm)') | |
dataframe = pd.DataFrame({"sepal length (cm)":[sepal_length],"sepal width (cm)":[sepal_width],'petal length (cm)':[petal_length],'petal width (cm)':[petal_width]}) | |
if st.button('Prediction'): | |
with open('model.pkl', 'rb') as file: | |
loaded_model = pickle.load(file) | |
final_output = loaded_model.predict(dataframe) | |
if final_output == '0': | |
st.write("The output class is setosa") | |
elif final_output == '1': | |
st.write("The output class is versicolor") | |
elif final_output == '2': | |
st.write("The output class is virginica") | |