Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pickle | |
def model(sl,sw,pl,pw): | |
sepal_length = float() | |
sepal_width = float() | |
petal_length = float() | |
petal_width = float() | |
dataframe = pd.DataFrame({"sepal length (cm)":[sepal_length],"sepal width (cm)":[sepal_width],'petal length (cm)':[petal_length],'petal width (cm)':[petal_width]}) | |
with open('/content/model.pkl', 'rb') as file: | |
loaded_model = pickle.load(file) | |
output = loaded_model.predict(dataframe) | |
if output == 0: | |
return"The output class is setosa" | |
elif output == 1: | |
return"The output class is versicolor" | |
elif output == 2: | |
return"The output class is virginica" | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
sepal_length = gr.Number(label="Sepal length (cm)", value=5.1) | |
sepal_width = gr.Number(label="Sepal width (cm)", value=3.5) | |
petal_length = gr.Number(label="Petal length (cm)", value=1.1) | |
petal_width = gr.Number(label="Petal width (cm)", value=2.1) | |
with gr.Row(): | |
outputs = gr.Textbox(label='Prediction') | |
run = gr.Button(value="Prediction") | |
run.click(model, inputs=[sepal_length, sepal_width, petal_length, petal_width], outputs=outputs) | |
demo.launch(debug=True, share=True) |