Spaces:
Runtime error
Runtime error
File size: 9,650 Bytes
3a7cb85 c84504e 3a7cb85 98511b0 b62f01b 7ae7416 b62f01b 7ae7416 fe30a6a 7ae7416 fe30a6a 7ae7416 3a7cb85 fe30a6a b62f01b 7ae7416 b62f01b 7ae7416 fe30a6a b62f01b fe30a6a b62f01b 7ae7416 b62f01b fe30a6a b62f01b 7ae7416 fe30a6a b62f01b fe30a6a 3833472 08e6691 7ae7416 d276473 e5e7e00 3833472 7ae7416 3a7cb85 7ae7416 e5e7e00 7ae7416 3a7cb85 7ae7416 3a7cb85 7ae7416 fe30a6a b62f01b fe30a6a b62f01b fe30a6a 3a7cb85 f450e7f 3a7cb85 f450e7f 3a7cb85 f450e7f fe30a6a d49e1e5 3a7cb85 f450e7f 3a7cb85 f450e7f 3a7cb85 f450e7f 3a7cb85 f450e7f 3a7cb85 f450e7f 3a7cb85 f450e7f 3a7cb85 f450e7f 3a7cb85 f450e7f 3a7cb85 272bc18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
# original code by zenafey
from utils import place_lora, get_exif_data
from css import css
from grutils import *
import inference
lora_list = pipe.constant("/sd/loras")
samplers = pipe.constant("/sd/samplers")
with gr.Blocks(css=css, theme="zenafey/prodia-web") as demo:
model = gr.Dropdown(interactive=True, value="anything-v4.5-pruned.ckpt [65745d25]", show_label=True, label="Stable Diffusion Checkpoint",
choices=model_list, elem_id="model_dd")
with gr.Tabs() as tabs:
with gr.Tab("txt2img", id='t2i'):
with gr.Row():
with gr.Column(scale=6, min_width=600):
prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k",
placeholder="Prompt", show_label=False, lines=3)
negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3,
value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
with gr.Row():
t2i_generate_btn = gr.Button("Generate", variant='primary', elem_id="generate")
t2i_stop_btn = gr.Button("Cancel", variant="stop", elem_id="generate", visible=False)
with gr.Row():
with gr.Column():
with gr.Tab("Generation"):
with gr.Row():
with gr.Column(scale=1):
sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True, label="Sampling Method",
choices=samplers)
with gr.Column(scale=1):
steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=30, value=25, step=1)
with gr.Row():
with gr.Column(scale=8):
width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
with gr.Column(scale=1):
batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
batch_count = gr.Slider(label="Batch Count", minimum=1, maximum=4, value=1, step=1)
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
seed = gr.Number(label="Seed", value=-1)
with gr.Tab("Lora"):
with gr.Row():
for lora in lora_list:
lora_btn = gr.Button(lora, size="sm")
lora_btn.click(place_lora, inputs=[prompt, lora_btn], outputs=prompt, queue=False)
with gr.Column():
image_output = gr.Gallery(columns=3,
value=["https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png"])
with gr.Tab("img2img", id='i2i'):
with gr.Row():
with gr.Column(scale=6, min_width=600):
i2i_prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k",
placeholder="Prompt", show_label=False, lines=3)
i2i_negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3,
value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
with gr.Row():
i2i_generate_btn = gr.Button("Generate", variant='primary', elem_id="generate")
i2i_stop_btn = gr.Button("Cancel", variant="stop", elem_id="generate", visible=False)
with gr.Row():
with gr.Column(scale=1):
with gr.Tab("Generation"):
i2i_image_input = gr.Image(type="pil")
with gr.Row():
with gr.Column(scale=1):
i2i_sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True,
label="Sampling Method", choices=samplers)
with gr.Column(scale=1):
i2i_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=30, value=25, step=1)
with gr.Row():
with gr.Column(scale=6):
i2i_width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
i2i_height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
with gr.Column(scale=1):
i2i_batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
i2i_batch_count = gr.Slider(label="Batch Count", minimum=1, maximum=4, value=1, step=1)
i2i_cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
i2i_denoising = gr.Slider(label="Denoising Strength", minimum=0, maximum=1, value=0.7, step=0.1)
i2i_seed = gr.Number(label="Seed", value=-1)
with gr.Tab("Lora"):
with gr.Row():
for lora in lora_list:
lora_btn = gr.Button(lora, size="sm")
lora_btn.click(place_lora, inputs=[i2i_prompt, lora_btn], outputs=i2i_prompt, queue=False)
with gr.Column(scale=1):
i2i_image_output = gr.Gallery(columns=3,
value=["https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png"])
with gr.Tab("Extras"):
with gr.Row():
with gr.Tab("Single Image"):
with gr.Column():
upscale_image_input = gr.Image(type="pil")
upscale_btn = gr.Button("Generate", variant="primary")
upscale_stop_btn = gr.Button("Stop", variant="stop", visible=False)
with gr.Tab("Scale by"):
upscale_scale = gr.Radio([2, 4], value=2, label="Resize")
upscale_output = gr.Image()
with gr.Tab("PNG Info"):
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil")
with gr.Column():
exif_output = gr.HTML(label="EXIF Data")
send_to_txt2img_btn = gr.Button("Send to txt2img")
with gr.Tab("Past generations"):
inference.gr_user_history.render()
t2i_event_start = t2i_generate_btn.click(
update_btn_start,
outputs=[t2i_generate_btn, t2i_stop_btn],
queue=False
)
t2i_event = t2i_event_start.then(
inference.txt2img,
inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed, batch_count],
outputs=[image_output]
)
t2i_event_end = t2i_event.then(
update_btn_end,
outputs=[t2i_generate_btn, t2i_stop_btn],
queue=False
)
t2i_stop_btn.click(fn=update_btn_end, outputs=[t2i_generate_btn, t2i_stop_btn], cancels=[t2i_event], queue=False)
image_input.upload(get_exif_data, inputs=[image_input], outputs=exif_output)
send_to_txt2img_btn.click(
fn=switch_to_t2i,
outputs=[tabs],
queue=False
).then(
fn=send_to_txt2img,
inputs=[image_input],
outputs=[prompt, negative_prompt, steps, seed, model, sampler, width, height, cfg_scale],
queue=False
)
i2i_event_start = i2i_generate_btn.click(
update_btn_start,
outputs=[i2i_generate_btn, i2i_stop_btn],
queue=False
)
i2i_event = i2i_event_start.then(inference.img2img,
inputs=[i2i_image_input, i2i_denoising, i2i_prompt, i2i_negative_prompt,
model, i2i_steps, i2i_sampler, i2i_cfg_scale, i2i_width, i2i_height,
i2i_seed, i2i_batch_count],
outputs=[i2i_image_output])
i2i_event_end = i2i_event.then(
update_btn_end,
outputs=[i2i_generate_btn, i2i_stop_btn],
queue=False
)
i2i_stop_btn.click(fn=update_btn_end, outputs=[i2i_generate_btn, i2i_stop_btn], cancels=[i2i_event], queue=False)
upscale_event_start = upscale_btn.click(
fn=update_btn_start,
outputs=[upscale_btn, upscale_stop_btn],
queue=False
)
upscale_event = upscale_event_start.then(
fn=inference.upscale,
inputs=[upscale_image_input, upscale_scale],
outputs=[upscale_output]
)
upscale_event_end = upscale_event.then(
fn=update_btn_end,
outputs=[upscale_btn, upscale_stop_btn],
queue=False
)
upscale_stop_btn.click(fn=update_btn_end, outputs=[upscale_btn, upscale_stop_btn], cancels=[upscale_event], queue=False)
demo.queue(max_size=200, api_open=False).launch(max_threads=400) |