Spaces:
Running
Running
File size: 5,019 Bytes
5545d25 5ab9924 5545d25 5ab9924 5545d25 5ab9924 5545d25 3727315 5545d25 5ab9924 5545d25 5ab9924 5545d25 5ab9924 5545d25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import sys
from importlib.metadata import version
import evaluate
import polars as pl
import gradio as gr
# Load evaluators
wer = evaluate.load("wer")
cer = evaluate.load("cer")
# Config
concurrency_limit = 5
title = "Evaluate ASR Outputs"
# https://www.tablesgenerator.com/markdown_tables
authors_table = """
## Authors
Follow them on social networks and **contact** if you need any help or have any questions:
| <img src="https://avatars.githubusercontent.com/u/7875085?v=4" width="100"> **Yehor Smoliakov** |
|-------------------------------------------------------------------------------------------------|
| https://t.me/smlkw in Telegram |
| https://x.com/yehor_smoliakov at X |
| https://github.com/egorsmkv at GitHub |
| https://huggingface.co/Yehor at Hugging Face |
| or use [email protected] |
""".strip()
examples = [
["evaluation_results.jsonl", True, False],
]
description_head = f"""
# {title}
## Overview
Upload a JSONL file generated by the ASR model.
""".strip()
description_foot = f"""
{authors_table}
""".strip()
metrics_value = """
Metrics will appear here.
""".strip()
tech_env = f"""
#### Environment
- Python: {sys.version}
""".strip()
tech_libraries = f"""
#### Libraries
- evaluate: {version('evaluate')}
- gradio: {version('gradio')}
- jiwer: {version('jiwer')}
- polars: {version('polars')}
""".strip()
def clean_value(x):
return x.replace('’', "'").strip().lower().replace(',', '').replace('.', '').replace('?', '').replace('!', '').replace('–', '').replace('«', '').replace('»', '')
def inference(file_name, clear_punctuation, show_chars, progress=gr.Progress()):
if not file_name:
raise gr.Error("Please paste your JSON file.")
progress(0, desc="Calculating...")
df = pl.read_ndjson(file_name)
inference_seconds = df['inference_total'].sum()
duration_seconds = df['duration'].sum()
rtf = inference_seconds / duration_seconds
references = df['reference']
if clear_punctuation:
predictions = df['prediction'].map_elements(clean_value)
else:
predictions = df['prediction']
# Evaluate
wer_value = round(
wer.compute(predictions=predictions, references=references), 4
)
cer_value = round(
cer.compute(predictions=predictions, references=references), 4
)
inference_time = inference_seconds
audio_duration = duration_seconds
rtf = inference_time / audio_duration
results = []
results.append(f"Metrics using `evaluate` library:")
results.append('')
results.append(f"- WER: {wer_value} metric, {round(wer_value*100, 4)}%")
results.append(f"- CER: {cer_value} metric, {round(cer_value*100, 4)}%")
results.append('')
results.append(f"- Accuracy on words: {round(100 - 100 * wer_value, 4)}%")
results.append(f"- Accuracy on chars: {round(100 - 100 * cer_value, 4)}%")
results.append('')
results.append(f"- Inference time: {round(inference_time, 4)} seconds, {round(inference_time/60, 4)} mins, {round(inference_time/60/60, 4)} hours")
results.append(f"- Audio duration: {round(audio_duration, 4)} seconds, {round(audio_duration/60/60, 4)} hours")
results.append('')
results.append(f"- RTF: {round(rtf, 4)}")
if show_chars:
all_chars = set()
for pred in list(df['prediction']):
for c in pred:
all_chars.add(c)
results.append('')
results.append(f"Chars in predictions:")
results.append(f"{list(all_chars)}")
return "\n".join(results)
demo = gr.Blocks(
title=title,
analytics_enabled=False,
theme=gr.themes.Base(),
)
with demo:
gr.Markdown(description_head)
gr.Markdown("## Usage")
with gr.Row():
with gr.Column():
jsonl_file = gr.File(label="A JSONL file")
clear_punctuation = gr.Checkbox(
label="Clear punctuation, some chars and convert to lowercase",
)
show_chars = gr.Checkbox(
label="Show chars in predictions",
)
metrics = gr.Textbox(
label="Metrics",
placeholder=metrics_value,
show_copy_button=True,
)
gr.Button("Calculate").click(
inference,
concurrency_limit=concurrency_limit,
inputs=[jsonl_file, clear_punctuation],
outputs=metrics,
)
with gr.Row():
gr.Examples(label="Choose an example", inputs=[jsonl_file, clear_punctuation, show_chars], examples=examples)
gr.Markdown(description_foot)
gr.Markdown("### Gradio app uses:")
gr.Markdown(tech_env)
gr.Markdown(tech_libraries)
if __name__ == "__main__":
demo.queue()
demo.launch()
|