Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
import sys
|
|
|
2 |
|
3 |
from importlib.metadata import version
|
4 |
|
5 |
import evaluate
|
6 |
import polars as pl
|
7 |
import gradio as gr
|
|
|
8 |
|
9 |
# Load evaluators
|
10 |
wer = evaluate.load("wer")
|
@@ -59,17 +61,45 @@ tech_env = f"""
|
|
59 |
tech_libraries = f"""
|
60 |
#### Libraries
|
61 |
|
62 |
-
- evaluate: {version(
|
63 |
-
- gradio: {version(
|
64 |
-
- jiwer: {version(
|
65 |
-
- polars: {version(
|
66 |
""".strip()
|
67 |
|
68 |
|
69 |
def clean_value(x):
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
73 |
def inference(file_name, clear_punctuation, show_chars, progress=gr.Progress()):
|
74 |
if not file_name:
|
75 |
raise gr.Error("Please paste your JSON file.")
|
@@ -78,25 +108,21 @@ def inference(file_name, clear_punctuation, show_chars, progress=gr.Progress()):
|
|
78 |
|
79 |
df = pl.read_ndjson(file_name)
|
80 |
|
81 |
-
inference_seconds = df[
|
82 |
-
duration_seconds = df[
|
83 |
|
84 |
rtf = inference_seconds / duration_seconds
|
85 |
|
86 |
-
references = df[
|
87 |
|
88 |
if clear_punctuation:
|
89 |
-
predictions = df[
|
90 |
else:
|
91 |
-
predictions = df[
|
92 |
|
93 |
# Evaluate
|
94 |
-
wer_value = round(
|
95 |
-
|
96 |
-
)
|
97 |
-
cer_value = round(
|
98 |
-
cer.compute(predictions=predictions, references=references), 4
|
99 |
-
)
|
100 |
|
101 |
inference_time = inference_seconds
|
102 |
audio_duration = duration_seconds
|
@@ -106,27 +132,33 @@ def inference(file_name, clear_punctuation, show_chars, progress=gr.Progress()):
|
|
106 |
results = []
|
107 |
|
108 |
results.append(f"Metrics using `evaluate` library:")
|
109 |
-
results.append(
|
110 |
-
results.append(f"- WER: {wer_value} metric, {round(wer_value*100, 4)}%")
|
111 |
-
results.append(f"- CER: {cer_value} metric, {round(cer_value*100, 4)}%")
|
112 |
-
results.append(
|
113 |
results.append(f"- Accuracy on words: {round(100 - 100 * wer_value, 4)}%")
|
114 |
results.append(f"- Accuracy on chars: {round(100 - 100 * cer_value, 4)}%")
|
115 |
-
results.append(
|
116 |
-
results.append(
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
119 |
results.append(f"- RTF: {round(rtf, 4)}")
|
120 |
|
121 |
if show_chars:
|
122 |
all_chars = set()
|
123 |
-
for pred in
|
124 |
for c in pred:
|
125 |
all_chars.add(c)
|
126 |
|
127 |
-
|
|
|
|
|
128 |
results.append(f"Chars in predictions:")
|
129 |
-
results.append(f"{
|
130 |
|
131 |
return "\n".join(results)
|
132 |
|
@@ -161,12 +193,16 @@ with demo:
|
|
161 |
gr.Button("Calculate").click(
|
162 |
inference,
|
163 |
concurrency_limit=concurrency_limit,
|
164 |
-
inputs=[jsonl_file, clear_punctuation],
|
165 |
outputs=metrics,
|
166 |
)
|
167 |
|
168 |
with gr.Row():
|
169 |
-
gr.Examples(
|
|
|
|
|
|
|
|
|
170 |
|
171 |
gr.Markdown(description_foot)
|
172 |
|
|
|
1 |
import sys
|
2 |
+
import re
|
3 |
|
4 |
from importlib.metadata import version
|
5 |
|
6 |
import evaluate
|
7 |
import polars as pl
|
8 |
import gradio as gr
|
9 |
+
from natsort import natsorted
|
10 |
|
11 |
# Load evaluators
|
12 |
wer = evaluate.load("wer")
|
|
|
61 |
tech_libraries = f"""
|
62 |
#### Libraries
|
63 |
|
64 |
+
- evaluate: {version("evaluate")}
|
65 |
+
- gradio: {version("gradio")}
|
66 |
+
- jiwer: {version("jiwer")}
|
67 |
+
- polars: {version("polars")}
|
68 |
""".strip()
|
69 |
|
70 |
|
71 |
def clean_value(x):
|
72 |
+
s = (
|
73 |
+
x.replace("’", "'")
|
74 |
+
.strip()
|
75 |
+
.lower()
|
76 |
+
.replace(":", " ")
|
77 |
+
.replace(",", " ")
|
78 |
+
.replace(".", " ")
|
79 |
+
.replace("?", " ")
|
80 |
+
.replace("!", " ")
|
81 |
+
.replace("–", " ")
|
82 |
+
.replace("«", " ")
|
83 |
+
.replace("»", " ")
|
84 |
+
.replace("—", " ")
|
85 |
+
.replace("…", " ")
|
86 |
+
.replace("/", " ")
|
87 |
+
.replace("\\", " ")
|
88 |
+
.replace("(", " ")
|
89 |
+
.replace(")", " ")
|
90 |
+
.replace("́", "")
|
91 |
+
.replace('"', " ")
|
92 |
+
)
|
93 |
+
|
94 |
+
s = re.sub(r" +", " ", s)
|
95 |
+
|
96 |
+
s = s.strip()
|
97 |
+
|
98 |
+
# print(s)
|
99 |
+
|
100 |
+
return s
|
101 |
+
|
102 |
|
|
|
103 |
def inference(file_name, clear_punctuation, show_chars, progress=gr.Progress()):
|
104 |
if not file_name:
|
105 |
raise gr.Error("Please paste your JSON file.")
|
|
|
108 |
|
109 |
df = pl.read_ndjson(file_name)
|
110 |
|
111 |
+
inference_seconds = df["inference_total"].sum()
|
112 |
+
duration_seconds = df["duration"].sum()
|
113 |
|
114 |
rtf = inference_seconds / duration_seconds
|
115 |
|
116 |
+
references = df["reference"]
|
117 |
|
118 |
if clear_punctuation:
|
119 |
+
predictions = df["prediction"].map_elements(clean_value, return_dtype=pl.String)
|
120 |
else:
|
121 |
+
predictions = df["prediction"]
|
122 |
|
123 |
# Evaluate
|
124 |
+
wer_value = round(wer.compute(predictions=predictions, references=references), 4)
|
125 |
+
cer_value = round(cer.compute(predictions=predictions, references=references), 4)
|
|
|
|
|
|
|
|
|
126 |
|
127 |
inference_time = inference_seconds
|
128 |
audio_duration = duration_seconds
|
|
|
132 |
results = []
|
133 |
|
134 |
results.append(f"Metrics using `evaluate` library:")
|
135 |
+
results.append("")
|
136 |
+
results.append(f"- WER: {wer_value} metric, {round(wer_value * 100, 4)}%")
|
137 |
+
results.append(f"- CER: {cer_value} metric, {round(cer_value * 100, 4)}%")
|
138 |
+
results.append("")
|
139 |
results.append(f"- Accuracy on words: {round(100 - 100 * wer_value, 4)}%")
|
140 |
results.append(f"- Accuracy on chars: {round(100 - 100 * cer_value, 4)}%")
|
141 |
+
results.append("")
|
142 |
+
results.append(
|
143 |
+
f"- Inference time: {round(inference_time, 4)} seconds, {round(inference_time / 60, 4)} mins, {round(inference_time / 60 / 60, 4)} hours"
|
144 |
+
)
|
145 |
+
results.append(
|
146 |
+
f"- Audio duration: {round(audio_duration, 4)} seconds, {round(audio_duration / 60 / 60, 4)} hours"
|
147 |
+
)
|
148 |
+
results.append("")
|
149 |
results.append(f"- RTF: {round(rtf, 4)}")
|
150 |
|
151 |
if show_chars:
|
152 |
all_chars = set()
|
153 |
+
for pred in predictions:
|
154 |
for c in pred:
|
155 |
all_chars.add(c)
|
156 |
|
157 |
+
sorted_chars = natsorted(list(all_chars))
|
158 |
+
|
159 |
+
results.append("")
|
160 |
results.append(f"Chars in predictions:")
|
161 |
+
results.append(f"{sorted_chars}")
|
162 |
|
163 |
return "\n".join(results)
|
164 |
|
|
|
193 |
gr.Button("Calculate").click(
|
194 |
inference,
|
195 |
concurrency_limit=concurrency_limit,
|
196 |
+
inputs=[jsonl_file, clear_punctuation, show_chars],
|
197 |
outputs=metrics,
|
198 |
)
|
199 |
|
200 |
with gr.Row():
|
201 |
+
gr.Examples(
|
202 |
+
label="Choose an example",
|
203 |
+
inputs=[jsonl_file, clear_punctuation, show_chars],
|
204 |
+
examples=examples,
|
205 |
+
)
|
206 |
|
207 |
gr.Markdown(description_foot)
|
208 |
|