Spaces:
Running
Running
Don't use joblib
Browse files- app.py +13 -19
- requirements.txt +0 -2
app.py
CHANGED
@@ -5,7 +5,6 @@ from importlib.metadata import version
|
|
5 |
import evaluate
|
6 |
import polars as pl
|
7 |
import gradio as gr
|
8 |
-
from joblib import Parallel, delayed
|
9 |
|
10 |
# Load evaluators
|
11 |
wer = evaluate.load("wer")
|
@@ -62,6 +61,7 @@ tech_libraries = f"""
|
|
62 |
- gradio: {version("gradio")}
|
63 |
- jiwer: {version("jiwer")}
|
64 |
- evaluate: {version("evaluate")}
|
|
|
65 |
- polars: {version("polars")}
|
66 |
""".strip()
|
67 |
|
@@ -128,21 +128,18 @@ def inference(file_name, _batch_mode, _calculate_metrics):
|
|
128 |
df = df.with_columns(pl.col("inference_total").round(2).alias("elapsed"))
|
129 |
df = df.drop(["inference_total"])
|
130 |
|
|
|
|
|
131 |
# reassign columns
|
132 |
if _batch_mode:
|
133 |
if _calculate_metrics:
|
134 |
-
|
135 |
-
|
136 |
-
for row in df.iter_rows(named=True)
|
137 |
)
|
138 |
-
|
139 |
-
|
140 |
-
for row in df.iter_rows(named=True)
|
141 |
)
|
142 |
|
143 |
-
df.insert_column(2, pl.Series("wer", wer_values))
|
144 |
-
df.insert_column(3, pl.Series("cer", cer_values))
|
145 |
-
|
146 |
fields = [
|
147 |
"elapsed",
|
148 |
"durations",
|
@@ -160,18 +157,13 @@ def inference(file_name, _batch_mode, _calculate_metrics):
|
|
160 |
]
|
161 |
else:
|
162 |
if _calculate_metrics:
|
163 |
-
|
164 |
-
|
165 |
-
for row in df.iter_rows(named=True)
|
166 |
)
|
167 |
-
|
168 |
-
|
169 |
-
for row in df.iter_rows(named=True)
|
170 |
)
|
171 |
|
172 |
-
df.insert_column(2, pl.Series("wer", wer_values))
|
173 |
-
df.insert_column(3, pl.Series("cer", cer_values))
|
174 |
-
|
175 |
fields = [
|
176 |
"elapsed",
|
177 |
"duration",
|
@@ -188,6 +180,8 @@ def inference(file_name, _batch_mode, _calculate_metrics):
|
|
188 |
"reference",
|
189 |
]
|
190 |
|
|
|
|
|
191 |
return df.select(fields)
|
192 |
|
193 |
|
|
|
5 |
import evaluate
|
6 |
import polars as pl
|
7 |
import gradio as gr
|
|
|
8 |
|
9 |
# Load evaluators
|
10 |
wer = evaluate.load("wer")
|
|
|
61 |
- gradio: {version("gradio")}
|
62 |
- jiwer: {version("jiwer")}
|
63 |
- evaluate: {version("evaluate")}
|
64 |
+
- pandas: {version("pandas")}
|
65 |
- polars: {version("polars")}
|
66 |
""".strip()
|
67 |
|
|
|
128 |
df = df.with_columns(pl.col("inference_total").round(2).alias("elapsed"))
|
129 |
df = df.drop(["inference_total"])
|
130 |
|
131 |
+
df_pd = df.to_pandas()
|
132 |
+
|
133 |
# reassign columns
|
134 |
if _batch_mode:
|
135 |
if _calculate_metrics:
|
136 |
+
df_pd["wer"] = df_pd.apply(
|
137 |
+
lambda row: compute_batch_wer(row["predictions"], row["references"]), axis=1,
|
|
|
138 |
)
|
139 |
+
df_pd["cer"] = df_pd.apply(
|
140 |
+
lambda row: compute_batch_cer(row["predictions"], row["references"]), axis=1,
|
|
|
141 |
)
|
142 |
|
|
|
|
|
|
|
143 |
fields = [
|
144 |
"elapsed",
|
145 |
"durations",
|
|
|
157 |
]
|
158 |
else:
|
159 |
if _calculate_metrics:
|
160 |
+
df_pd["wer"] = df_pd.apply(
|
161 |
+
lambda row: compute_wer(row["prediction"], row["reference"]), axis=1,
|
|
|
162 |
)
|
163 |
+
df_pd["cer"] = df_pd.apply(
|
164 |
+
lambda row: compute_cer(row["prediction"], row["reference"]), axis=1,
|
|
|
165 |
)
|
166 |
|
|
|
|
|
|
|
167 |
fields = [
|
168 |
"elapsed",
|
169 |
"duration",
|
|
|
180 |
"reference",
|
181 |
]
|
182 |
|
183 |
+
df = pl.DataFrame(df_pd)
|
184 |
+
|
185 |
return df.select(fields)
|
186 |
|
187 |
|
requirements.txt
CHANGED
@@ -3,5 +3,3 @@ gradio==5.23.0
|
|
3 |
polars==1.26.0
|
4 |
evaluate==0.4.3
|
5 |
jiwer==3.1.0
|
6 |
-
|
7 |
-
joblib==1.4.2
|
|
|
3 |
polars==1.26.0
|
4 |
evaluate==0.4.3
|
5 |
jiwer==3.1.0
|
|
|
|