Yereque commited on
Commit
f7b4690
·
1 Parent(s): 2421d73

classifaction

Browse files
Files changed (2) hide show
  1. app.py +47 -0
  2. requirements.txt +3 -0
app.py CHANGED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import pipeline
3
+
4
+ print("Loading the model...")
5
+
6
+ # Title and Description
7
+ st.title("Sentiment Analysis Web App")
8
+ st.write("""
9
+ ### Powered by Hugging Face and Streamlit
10
+ This app uses a pre-trained NLP model from Hugging Face to analyze the sentiment of the text you enter.
11
+ Try entering a sentence to see if it's positive, negative, or neutral!
12
+ """)
13
+
14
+ # Initialize Hugging Face Sentiment Analysis Pipeline
15
+ @st.cache_resource
16
+ def load_model():
17
+ print("before load model")
18
+ return pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
19
+
20
+ sentiment_analyzer = load_model()
21
+
22
+ # Input Text from User
23
+ user_input = st.text_area("Enter some text to analyze:", "Streamlit and Hugging Face make NLP fun!")
24
+
25
+ # Analyze Sentiment
26
+ if st.button("Analyze Sentiment"):
27
+ print("button click")
28
+ if user_input.strip():
29
+ result = sentiment_analyzer(user_input)[0]
30
+ sentiment = result['label']
31
+ score = result['score']
32
+
33
+ # Display the Result
34
+ st.subheader("Sentiment Analysis Result")
35
+ st.write(f"**Sentiment:** {sentiment}")
36
+ st.write(f"**Confidence Score:** {score:.2f}")
37
+ else:
38
+ st.warning("Please enter some text to analyze!")
39
+
40
+ # Sidebar with About Information
41
+ st.sidebar.title("About")
42
+ st.sidebar.info("""
43
+ This app demonstrates the use of Hugging Face's NLP models with Streamlit.
44
+ It uses the distilbert-base-uncased-finetuned-sst-2-english model for sentiment analysis.
45
+ """)
46
+
47
+ print('after')
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ streamlit==1.41.1
2
+ transformers
3
+ torch