File size: 2,099 Bytes
4d18cb9
 
 
 
ecb00ce
837f087
ecb00ce
837f087
 
ecb00ce
4d18cb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96a4cae
4d18cb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
837f087
 
 
 
 
 
 
 
 
4d18cb9
837f087
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from huggingface_hub import login
import spaces
import gradio as gr
import os

token = os.environ.get("HF_TOKEN_READ")
login(token)

model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype = torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model_id)

if torch.cuda.is_available():
    device = torch.device("cuda")
else:
    device = torch.device("cpu")

model = model.to(device)

@spaces.GPU
def respuesta(
    message,
    history,
    system_message,
    max_tokens,
    temperature,
    top_p
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(
        messages,
        add_generation_prompt=True,
        return_tensors='pt'
    ).to(model.device)

    terminators = [
        tokenizer.eos_token_id,
        tokenizer.convert_tokens_to_ids("<|eot_id|>")
    ]

    outputs = model.generate(
        input_ids,
        max_new_tokens=max_tokens,
        eos_token_id=terminators,
        do_sample=True,
        temperature=temperature,
        top_p=top_p
    )

    response = ''

    for message in tokenizer.decode(
        outputs[0][input_ids.shape[-1]:],
        skip_special_tokens=True
    ):
        response += message
        yield response


demo = gr.ChatInterface(
    respuesta,
    additional_inputs=[
        gr.Textbox(value="Eres un chatbot amigable", label="System messaage"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),            
    ]
)

if __name__ == "__main__":
    demo.launch()