Update space
Browse files- app.py +58 -60
- requirements.txt +4 -1
app.py
CHANGED
@@ -1,64 +1,62 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
-
|
4 |
-
"""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
-
|
9 |
-
|
10 |
-
def respond(
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
-
|
|
|
1 |
+
from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
|
2 |
+
import tensorflow as tf
|
3 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
# Load the tokenizer and model
|
6 |
+
model_name = "Zabihin/Symptom_to_Diagnosis"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
|
9 |
+
|
10 |
+
# Clean the input text
|
11 |
+
def clean_input(symptom_text):
|
12 |
+
# Remove unwanted characters or non-ASCII characters
|
13 |
+
symptom_text = ''.join([c for c in symptom_text if ord(c) < 128])
|
14 |
+
symptom_text = symptom_text.lower() # Optional: Convert to lowercase
|
15 |
+
return symptom_text
|
16 |
+
|
17 |
+
# Define the predict function
|
18 |
+
def predict(symptom_text, chat_history=[]):
|
19 |
+
try:
|
20 |
+
# Clean the input
|
21 |
+
symptom_text = clean_input(symptom_text)
|
22 |
+
|
23 |
+
# Tokenize the input
|
24 |
+
inputs = tokenizer(symptom_text, return_tensors="tf", padding=True, truncation=True, max_length=512)
|
25 |
+
|
26 |
+
# Get model output
|
27 |
+
outputs = model(**inputs)
|
28 |
+
logits = outputs.logits
|
29 |
+
prediction = tf.argmax(logits, axis=-1).numpy()[0]
|
30 |
+
|
31 |
+
# Map the prediction to a label
|
32 |
+
labels = {
|
33 |
+
0: "Allergy", 1: "Arthritis", 2: "Bronchial Asthma", 3: "Cervical Spondylosis",
|
34 |
+
4: "Chicken Pox", 5: "Common Cold", 6: "Dengue", 7: "Diabetes", 8: "Drug Reaction",
|
35 |
+
9: "Fungal Infection", 10: "Gastroesophageal Reflux Disease", 11: "Hypertension",
|
36 |
+
12: "Impetigo", 13: "Jaundice", 14: "Malaria", 15: "Migraine", 16: "Peptic Ulcer Disease",
|
37 |
+
17: "Pneumonia", 18: "Psoriasis", 19: "Typhoid", 20: "Urinary Tract Infection", 21: "Varicose Veins"
|
38 |
+
}
|
39 |
+
|
40 |
+
diagnosis = labels.get(prediction, "Unknown diagnosis")
|
41 |
+
|
42 |
+
# Add conversation history
|
43 |
+
chat_history.append(("User", symptom_text))
|
44 |
+
chat_history.append(("AI", f"Predicted Diagnosis: {diagnosis}. Please consult a doctor for more accurate results."))
|
45 |
+
|
46 |
+
except Exception as e:
|
47 |
+
chat_history.append(("AI", f"Error: {str(e)}"))
|
48 |
+
|
49 |
+
return chat_history, ""
|
50 |
+
|
51 |
+
# Gradio UI
|
52 |
+
with gr.Blocks() as interface:
|
53 |
+
gr.Markdown("<h1 style='text-align: center; margin-top: 20px; margin-bottom: 20px; font-size: 36px;'>Medi Mind - Your AI Health Assistant</h1>")
|
54 |
+
chatbot = gr.Chatbot()
|
55 |
+
input_box = gr.Textbox(show_label=False, placeholder="Describe your symptoms here...")
|
56 |
+
send_button = gr.Button("Send")
|
57 |
+
|
58 |
+
input_box.submit(predict, [input_box, chatbot], [chatbot, input_box])
|
59 |
+
send_button.click(predict, [input_box, chatbot], [chatbot, input_box])
|
60 |
|
61 |
if __name__ == "__main__":
|
62 |
+
interface.launch(share=True)
|
requirements.txt
CHANGED
@@ -1 +1,4 @@
|
|
1 |
-
huggingface_hub==0.25.2
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub==0.25.2
|
2 |
+
gradio
|
3 |
+
tensorflow
|
4 |
+
transformers
|