Yesandu commited on
Commit
282969e
·
1 Parent(s): cfd16f2

Update space

Browse files
Files changed (2) hide show
  1. app.py +58 -60
  2. requirements.txt +4 -1
app.py CHANGED
@@ -1,64 +1,62 @@
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
2
+ import tensorflow as tf
3
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
+ # Load the tokenizer and model
6
+ model_name = "Zabihin/Symptom_to_Diagnosis"
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
9
+
10
+ # Clean the input text
11
+ def clean_input(symptom_text):
12
+ # Remove unwanted characters or non-ASCII characters
13
+ symptom_text = ''.join([c for c in symptom_text if ord(c) < 128])
14
+ symptom_text = symptom_text.lower() # Optional: Convert to lowercase
15
+ return symptom_text
16
+
17
+ # Define the predict function
18
+ def predict(symptom_text, chat_history=[]):
19
+ try:
20
+ # Clean the input
21
+ symptom_text = clean_input(symptom_text)
22
+
23
+ # Tokenize the input
24
+ inputs = tokenizer(symptom_text, return_tensors="tf", padding=True, truncation=True, max_length=512)
25
+
26
+ # Get model output
27
+ outputs = model(**inputs)
28
+ logits = outputs.logits
29
+ prediction = tf.argmax(logits, axis=-1).numpy()[0]
30
+
31
+ # Map the prediction to a label
32
+ labels = {
33
+ 0: "Allergy", 1: "Arthritis", 2: "Bronchial Asthma", 3: "Cervical Spondylosis",
34
+ 4: "Chicken Pox", 5: "Common Cold", 6: "Dengue", 7: "Diabetes", 8: "Drug Reaction",
35
+ 9: "Fungal Infection", 10: "Gastroesophageal Reflux Disease", 11: "Hypertension",
36
+ 12: "Impetigo", 13: "Jaundice", 14: "Malaria", 15: "Migraine", 16: "Peptic Ulcer Disease",
37
+ 17: "Pneumonia", 18: "Psoriasis", 19: "Typhoid", 20: "Urinary Tract Infection", 21: "Varicose Veins"
38
+ }
39
+
40
+ diagnosis = labels.get(prediction, "Unknown diagnosis")
41
+
42
+ # Add conversation history
43
+ chat_history.append(("User", symptom_text))
44
+ chat_history.append(("AI", f"Predicted Diagnosis: {diagnosis}. Please consult a doctor for more accurate results."))
45
+
46
+ except Exception as e:
47
+ chat_history.append(("AI", f"Error: {str(e)}"))
48
+
49
+ return chat_history, ""
50
+
51
+ # Gradio UI
52
+ with gr.Blocks() as interface:
53
+ gr.Markdown("<h1 style='text-align: center; margin-top: 20px; margin-bottom: 20px; font-size: 36px;'>Medi Mind - Your AI Health Assistant</h1>")
54
+ chatbot = gr.Chatbot()
55
+ input_box = gr.Textbox(show_label=False, placeholder="Describe your symptoms here...")
56
+ send_button = gr.Button("Send")
57
+
58
+ input_box.submit(predict, [input_box, chatbot], [chatbot, input_box])
59
+ send_button.click(predict, [input_box, chatbot], [chatbot, input_box])
60
 
61
  if __name__ == "__main__":
62
+ interface.launch(share=True)
requirements.txt CHANGED
@@ -1 +1,4 @@
1
- huggingface_hub==0.25.2
 
 
 
 
1
+ huggingface_hub==0.25.2
2
+ gradio
3
+ tensorflow
4
+ transformers