|
import os |
|
import glob |
|
import argparse |
|
from code_efficiency_calculator import run_model_task |
|
|
|
|
|
def calculate_memory_usage(dat_file_path): |
|
with open(dat_file_path, 'r') as file: |
|
prev_time = 0 |
|
prev_mem_mb = 0 |
|
mem_time_mb_s = 0 |
|
next(file) |
|
for line in file: |
|
if "__main__." in line: |
|
continue |
|
parts = line.split() |
|
mem_in_mb = float(parts[1]) |
|
timestamp = float(parts[2]) |
|
if prev_time > 0: |
|
time_interval_s = timestamp - prev_time |
|
mem_time_mb_s += (prev_mem_mb + mem_in_mb) / 2 * time_interval_s |
|
prev_time = timestamp |
|
prev_mem_mb = mem_in_mb |
|
return mem_time_mb_s |
|
|
|
|
|
def calculate_runtime(dat_file_path): |
|
with open(dat_file_path, 'r') as file: |
|
start_time = float("inf") |
|
end_time = float("-inf") |
|
next(file) |
|
for line in file: |
|
if "__main__." in line: |
|
continue |
|
parts = line.split() |
|
timestamp = float(parts[2]) |
|
start_time = min(start_time, timestamp) |
|
end_time = max(end_time, timestamp) |
|
return max(end_time - start_time,0) |
|
|
|
def report_max_memory_usage(dat_file_path): |
|
max_memory_usage = 0 |
|
with open(dat_file_path, 'r') as file: |
|
next(file) |
|
for line in file: |
|
if "__main__." in line: |
|
continue |
|
parts = line.split() |
|
mem_in_mb = float(parts[1]) |
|
max_memory_usage = max(max_memory_usage, mem_in_mb) |
|
return max_memory_usage |
|
|
|
def report_results(task, model, file): |
|
run_model_task(task, model, file) |
|
dat_directory = f"./results/{task}_{model}" |
|
canonical_solution_directory = f"./results/{task}_canonical_solution" |
|
canonical_solution_memory_usage = {} |
|
canonical_solution_execution_time = {} |
|
canonical_solution_max_memory_usage = {} |
|
for dat_file in glob.glob(os.path.join(canonical_solution_directory, "*.dat")): |
|
try: |
|
problem_idx = os.path.basename(dat_file).split('.')[0] |
|
canonical_solution_memory_usage[int(problem_idx)] = calculate_memory_usage(dat_file) |
|
canonical_solution_execution_time[int(problem_idx)] = calculate_runtime(dat_file) |
|
canonical_solution_max_memory_usage[int(problem_idx)] = report_max_memory_usage(dat_file) |
|
except: |
|
pass |
|
|
|
|
|
global_result = {} |
|
|
|
|
|
completion_memory_usage = {} |
|
execution_time = {} |
|
max_memory_usage = {} |
|
task_idx = {} |
|
for dat_file in glob.glob(os.path.join(dat_directory, "*.dat")): |
|
try: |
|
problem_idx = os.path.basename(dat_file).split('.')[0] |
|
execution_time_result = calculate_runtime(dat_file) |
|
completion_memory_usage[int(problem_idx)] = calculate_memory_usage(dat_file) |
|
execution_time[int(problem_idx)] = calculate_runtime(dat_file) |
|
max_memory_usage[int(problem_idx)] = report_max_memory_usage(dat_file) |
|
task_idx[int(problem_idx)] = dat_file |
|
except Exception as e: |
|
print(dat_file) |
|
global_result[model] = {"completion_memory_usage":completion_memory_usage,"execution_time":execution_time,"max_memory_usage":max_memory_usage,"task_idx":task_idx} |
|
|
|
|
|
|
|
save_results = [] |
|
max_net_lists = {} |
|
max_nmu_lists = {} |
|
max_ntmu_lists = {} |
|
|
|
for model in global_result.keys(): |
|
completion_memory_usage = global_result[model]["completion_memory_usage"] |
|
execution_time = global_result[model]["execution_time"] |
|
max_memory_usage = global_result[model]["max_memory_usage"] |
|
|
|
|
|
total_execution_time = 0 |
|
|
|
|
|
normalized_execution_time = 0 |
|
|
|
|
|
total_max_memory_usage = 0 |
|
|
|
|
|
normalized_max_memory_usage = 0 |
|
|
|
|
|
total_memory_usage = 0 |
|
total_canonical_solution_max_memory_usage = 0 |
|
total_canonical_solution_execution_time = 0 |
|
total_canonical_solution_memory_usage = 0 |
|
|
|
normalized_memory_usage = 0 |
|
total_codes = 0 |
|
normalized_execution_time_list = [] |
|
normalized_max_memory_usage_list = [] |
|
normalized_memory_usage_list = [] |
|
total_fast = 0 |
|
total_95 = 0 |
|
total_97=0 |
|
total_99=0 |
|
total_100=0 |
|
total_101=0 |
|
total_1000=0 |
|
total_500=0 |
|
category_tmp = {} |
|
total_10000=0 |
|
max_net = float("-inf") |
|
max_nmu = float("-inf") |
|
max_tmu = float("-inf") |
|
|
|
total_500_net = 0 |
|
total_500_nmu = 0 |
|
total_500_tmu = 0 |
|
|
|
for idx in completion_memory_usage.keys(): |
|
if idx not in canonical_solution_memory_usage.keys(): |
|
continue |
|
|
|
|
|
total_memory_usage += completion_memory_usage[idx] |
|
total_execution_time += execution_time[idx] |
|
total_max_memory_usage += max_memory_usage[idx] |
|
total_canonical_solution_max_memory_usage+=canonical_solution_max_memory_usage[idx] |
|
total_canonical_solution_memory_usage+=canonical_solution_memory_usage[idx] |
|
total_canonical_solution_execution_time+=canonical_solution_execution_time[idx] |
|
if execution_time[idx]/canonical_solution_execution_time[idx]>5: |
|
total_500_net+=1 |
|
if max_net<execution_time[idx]/canonical_solution_execution_time[idx]: |
|
max_net = execution_time[idx]/canonical_solution_execution_time[idx] |
|
normalized_execution_time += execution_time[idx]/canonical_solution_execution_time[idx] |
|
normalized_execution_time_list.append(execution_time[idx]/canonical_solution_execution_time[idx]) |
|
if max_memory_usage[idx]/canonical_solution_max_memory_usage[idx]>5: |
|
total_500_nmu+=1 |
|
if max_nmu<max_memory_usage[idx]/canonical_solution_max_memory_usage[idx]: |
|
max_nmu = max_memory_usage[idx]/canonical_solution_max_memory_usage[idx] |
|
normalized_max_memory_usage += max_memory_usage[idx]/canonical_solution_max_memory_usage[idx] |
|
normalized_max_memory_usage_list.append(max_memory_usage[idx]/canonical_solution_max_memory_usage[idx]) |
|
|
|
if completion_memory_usage[idx]/canonical_solution_memory_usage[idx]>5: |
|
total_500_tmu+=1 |
|
net = execution_time[idx] / canonical_solution_execution_time[idx] |
|
nmu = completion_memory_usage[idx] / canonical_solution_memory_usage[idx] |
|
ntmu = max_memory_usage[idx] / canonical_solution_max_memory_usage[idx] |
|
normalized_memory_usage += completion_memory_usage[idx]/canonical_solution_memory_usage[idx] |
|
normalized_memory_usage_list.append(completion_memory_usage[idx]/canonical_solution_memory_usage[idx]) |
|
|
|
if len(max_net_lists) < 10 or net > min(max_net_lists.keys()): |
|
if len(max_net_lists) >= 10: |
|
min_key = min(max_net_lists.keys()) |
|
del max_net_lists[min_key] |
|
max_net_lists[net] = (model, idx) |
|
|
|
if len(max_nmu_lists) < 10 or nmu > min(max_nmu_lists.keys()): |
|
if len(max_nmu_lists) >= 10: |
|
min_key = min(max_nmu_lists.keys()) |
|
del max_nmu_lists[min_key] |
|
max_nmu_lists[nmu] = (model, idx) |
|
|
|
if len(max_ntmu_lists) < 10 or ntmu > min(max_ntmu_lists.keys()): |
|
if len(max_ntmu_lists) >= 10: |
|
min_key = min(max_ntmu_lists.keys()) |
|
del max_ntmu_lists[min_key] |
|
max_ntmu_lists[ntmu] = (model, idx) |
|
max_tmu = max(max_tmu,completion_memory_usage[idx]/canonical_solution_memory_usage[idx]) |
|
total_codes+=1 |
|
|
|
if len(normalized_execution_time_list)==0: |
|
print(model) |
|
continue |
|
normalized_execution_time = normalized_execution_time/len(normalized_execution_time_list) |
|
normalized_max_memory_usage = normalized_max_memory_usage/len(normalized_execution_time_list) |
|
normalized_memory_usage = normalized_memory_usage/len(normalized_execution_time_list) |
|
total_execution_time = total_execution_time/len(normalized_execution_time_list) |
|
total_memory_usage = total_memory_usage/len(normalized_execution_time_list) |
|
total_max_memory_usage = total_max_memory_usage/len(normalized_execution_time_list) |
|
|
|
pass1 = len(completion_memory_usage)/1000*100 |
|
|
|
total_500_net = total_500_net/len(normalized_execution_time_list)*100 |
|
total_500_nmu = total_500_nmu/len(normalized_execution_time_list)*100 |
|
total_500_tmu = total_500_tmu/len(normalized_execution_time_list)*100 |
|
|
|
return f"{model}&{total_execution_time:.2f}&{normalized_execution_time:.2f}&{max_net:.2f}&{total_500_net:.1f}&{total_max_memory_usage:.2f}&{normalized_max_memory_usage:.2f}&{max_nmu:.2f}&{total_500_nmu:.1f}&{total_memory_usage:.2f}&{normalized_memory_usage:.2f}&{max_tmu:.2f}&{total_500_tmu:.1f}&{pass1:.1f}\\\\" |
|
|
|
|
|
if __name__ == "__main__": |
|
parse = argparse.ArgumentParser() |
|
parse.add_argument("--task", type=str, default="EffiBench") |
|
parse.add_argument("--model", type=str, default="gpt-4") |
|
parse.add_argument("--file", type=str, default="") |
|
args = parse.parse_args() |
|
|
|
if not args.file: |
|
args.file = f"./{args.task}_{args.model}.json" |
|
|
|
report_results(args.task,args.model, args.file) |
|
|