File size: 7,617 Bytes
570db9a
 
 
68d6ff9
 
570db9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c38041d
 
 
 
 
 
 
 
 
 
 
570db9a
68d6ff9
 
570db9a
 
 
 
 
 
 
 
 
 
c38041d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
570db9a
c38041d
 
 
 
 
 
 
570db9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68d6ff9
c38041d
570db9a
 
 
 
c38041d
 
 
 
 
68d6ff9
570db9a
 
 
 
 
c38041d
570db9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c38041d
570db9a
c38041d
570db9a
 
c38041d
 
 
 
570db9a
c38041d
570db9a
 
 
 
c38041d
 
 
570db9a
 
 
c38041d
 
 
 
570db9a
 
 
 
 
e5db566
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import torch
import torch.nn.functional as F
from torch import Tensor
import spaces

import numpy as np
from PIL import Image
import json, os, random
import gradio as gr
import torchvision.transforms.functional as TF
from safetensors.torch import load_file  # Import the load_file function from safetensors
from matplotlib import cm
from huggingface_hub import hf_hub_download

from typing import Tuple

from models import get_model


def resize_density_map(x: Tensor, size: Tuple[int, int]) -> Tensor:
    x_sum = torch.sum(x, dim=(-1, -2))
    x = F.interpolate(x, size=size, mode="bilinear")
    scale_factor = torch.nan_to_num(torch.sum(x, dim=(-1, -2)) / x_sum, nan=0.0, posinf=0.0, neginf=0.0)
    return x * scale_factor


def init_seeds(seed: int) -> None:
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)


mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
alpha = 0.8
init_seeds(42)

# -----------------------------
# Define the model architecture
# -----------------------------
truncation = 4
reduction = 8
granularity = "fine"
anchor_points = "average"
input_size = 224

# Comment the lines below to test non-CLIP models.
prompt_type = "word"
num_vpt = 32
vpt_drop = 0.
deep_vpt = True

repo_id = "Yiming-M/CLIP-EBC"
model_configs = {
    "CLIP_EBC_ViT_L_14": {
        "model_name": "clip_vit_l_14",
        "filename": "nwpu_weights/CLIP_EBC_ViT_L_14/model.safetensors",
    },
    "CLIP_EBC_ViT_B_16": {
        "model_name": "clip_vit_b_16",
        "filename": "nwpu_weights/CLIP_EBC_ViT_B_16/model.safetensors",
    },
}

# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = "cuda"

if truncation is None:  # regression, no truncation.
    bins, anchor_points = None, None
else:
    with open(os.path.join("configs", f"reduction_{reduction}.json"), "r") as f:
        config = json.load(f)[str(truncation)]["nwpu"]
    bins = config["bins"][granularity]
    anchor_points = config["anchor_points"][granularity]["average"] if anchor_points == "average" else config["anchor_points"][granularity]["middle"]
    bins = [(float(b[0]), float(b[1])) for b in bins]
    anchor_points = [float(p) for p in anchor_points]
# Use a global reference to store the model instance
loaded_model = None

def load_model(model_choice: str):
    global loaded_model

    config = model_configs[model_choice]
    model_name = config["model_name"]
    filename = config["filename"]

    # Prepare bins and anchor_points if using classification
    if truncation is None:
        bins_, anchor_points_ = None, None
    else:
        with open(os.path.join("configs", f"reduction_{reduction}.json"), "r") as f:
            config_json = json.load(f)[str(truncation)]["nwpu"]
        bins_ = config_json["bins"][granularity]
        anchor_points_ = config_json["anchor_points"][granularity]["average"] if anchor_points == "average" else config_json["anchor_points"][granularity]["middle"]
        bins_ = [(float(b[0]), float(b[1])) for b in bins_]
        anchor_points_ = [float(p) for p in anchor_points_]

    # Build model
    model = get_model(
        backbone=model_name,
        input_size=input_size,
        reduction=reduction,
        bins=bins_,
        anchor_points=anchor_points_,
        prompt_type=prompt_type,
        num_vpt=num_vpt,
        vpt_drop=vpt_drop,
        deep_vpt=deep_vpt,
    )

    weights_path = hf_hub_download(repo_id, filename)
    state_dict = load_file(weights_path)
    new_state_dict = {k.replace("model.", ""): v for k, v in state_dict.items()}
    model.load_state_dict(new_state_dict)
    model.eval()
    
    loaded_model = model


# -----------------------------
# Preprocessing function
# -----------------------------
# Adjust the image transforms to match what your model expects.
def transform(image: Image.Image):
    assert isinstance(image, Image.Image), "Input must be a PIL Image"
    image_tensor = TF.to_tensor(image)

    image_height, image_width = image_tensor.shape[-2:]
    if image_height < input_size or image_width < input_size:
        # Find the ratio to resize the image while maintaining the aspect ratio
        ratio = max(input_size / image_height, input_size / image_width)
        new_height = int(image_height * ratio) + 1
        new_width = int(image_width * ratio) + 1
        image_tensor = TF.resize(image_tensor, (new_height, new_width), interpolation=TF.InterpolationMode.BICUBIC, antialias=True)

    image_tensor = TF.normalize(image_tensor, mean=mean, std=std)
    return image_tensor.unsqueeze(0)  # Add batch dimension



# -----------------------------
# Inference function
# -----------------------------
@spaces.GPU(duration=120)
def predict(image: Image.Image, model_choice: str = "CLIP_EBC_ViT_B_16"):
    """
    Given an input image, preprocess it, run the model to obtain a density map,
    compute the total crowd count, and prepare the density map for display.
    """
    global loaded_model

    if loaded_model is None or model_configs[model_choice]["model_name"] not in loaded_model.__class__.__name__:
        load_model(model_choice)

    loaded_model.to(device)
    # Preprocess the image
    input_width, input_height = image.size
    input_tensor = transform(image).to(device)  # shape: (1, 3, H, W)
    
    with torch.no_grad():
        density_map = loaded_model(input_tensor)  # expected shape: (1, 1, H, W)
        total_count = density_map.sum().item()
        resized_density_map = resize_density_map(density_map, (input_height, input_width)).cpu().squeeze().numpy()
    
    # Normalize the density map for display purposes
    eps = 1e-8
    density_map_norm = (resized_density_map - resized_density_map.min()) / (resized_density_map.max() - resized_density_map.min() + eps)
    
    # Apply a colormap (e.g., 'jet') to get an RGBA image
    colormap = cm.get_cmap("jet")
    # The colormap returns values in [0,1]. Scale to [0,255] and convert to uint8.
    density_map_color = (colormap(density_map_norm) * 255).astype(np.uint8)
    density_map_color_img = Image.fromarray(density_map_color).convert("RGBA")
    
    # Ensure the original image is in RGBA format.
    image_rgba = image.convert("RGBA")
    overlayed_image = Image.blend(image_rgba, density_map_color_img, alpha=alpha)
    
    return image, overlayed_image, f"Predicted Count: {total_count:.2f}"


# -----------------------------
# Build Gradio Interface using Blocks for a two-column layout
# -----------------------------
with gr.Blocks() as demo:
    gr.Markdown("# Crowd Counting by CLIP-EBC (Pre-trained on NWPU-Crowd)")
    gr.Markdown("Upload an image or select an example below to see the predicted crowd density map and total count.")

    with gr.Row():
        with gr.Column():
            model_choice = gr.Dropdown(
                choices=list(model_configs.keys()),
                value="CLIP_EBC_ViT_B_16",
                label="Select Model"
            )
            input_img = gr.Image(label="Input Image", sources=["upload", "clipboard"], type="pil")
            submit_btn = gr.Button("Predict")
        with gr.Column():
            output_img = gr.Image(label="Predicted Density Map", type="pil")
            output_text = gr.Textbox(label="Total Count")

    submit_btn.click(fn=predict, inputs=[input_img, model_choice], outputs=[input_img, output_img, output_text])

    gr.Examples(
        examples=[
            ["example1.jpg"],
            ["example2.jpg"],
            ["example3.jpg"],
            ["example4.jpg"],
            ["example5.jpg"],
        ],
        inputs=input_img,
        label="Try an example"
    )

demo.launch()