Spaces:
Sleeping
Sleeping
File size: 15,231 Bytes
570db9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import torch
from torch import nn, Tensor
import torch.nn.functional as F
import numpy as np
import os
import math
from typing import List, Tuple, Union, Optional
from . import _clip
from ..utils import _init_weights, make_resnet_layers, Bottleneck, BasicBlock
from .utils import format_count
curr_dir = os.path.abspath(os.path.dirname(__file__))
# resnet50: reduction, channels, embed_dim = 32, 2048, 1024
# resnet101: reduction, channels, embed_dim = 32, 2048, 512
# resnet50x4: reduction, channels, embed_dim = 32, 2560, 640
# resnet50x16: reduction, channels, embed_dim = 32, 3072, 768
# resnet50x64: reduction, channels, embed_dim = 32, 4096, 1024
# vit_b_32: reduction, channels, embed_dim = 32, 768, 512
# vit_b_16: reduction, channels, embed_dim = 16, 768, 512
# vit_l_14: reduction, channels, embed_dim = 14, 1024, 768
# vit_l_14_336px: reduction, channels, embed_dim = 14, 1024, 768
resnet_backbones = ["resnet50", "resnet101", "resnet50x4", "resnet50x16", "resnet50x64"]
vit_backbones = ["vit_b_16", "vit_b_32", "vit_l_14", "vit_l_14_336px"]
class CLIP_EBC(nn.Module):
def __init__(
self,
backbone: str,
bins: List[Tuple[float, float]],
anchor_points: List[float],
reduction: Optional[int] = None,
freeze_text_encoder: bool = True,
prompt_type: str = "number",
input_size: Optional[int] = None,
num_vpt: Optional[int] = None,
deep_vpt: Optional[bool] = None,
vpt_drop: Optional[float] = None,
decoder_block: Optional[nn.Module] = None,
decoder_cfg: Optional[List[Union[str, int]]] = None,
) -> None:
super().__init__()
assert backbone in resnet_backbones + vit_backbones, f"Backbone should be in {resnet_backbones + vit_backbones}, got {backbone}"
self.backbone = backbone
# Image encoder
if backbone in resnet_backbones:
self.image_encoder = getattr(_clip, f"{backbone}_img")(features_only=True, out_indices=(-1,), reduction=reduction)
else:
assert input_size is not None, "Expected input_size to be an integer, got None."
assert num_vpt is not None, "Expected num_vpt to be an integer, got None."
assert deep_vpt is not None, "Expected deep_vpt to be a boolean, got None."
assert vpt_drop is not None, "Expected vpt_drop to be a float, got None."
self.image_encoder = getattr(_clip, f"{backbone}_img")(features_only=True, input_size=input_size)
self.image_encoder_depth = len(self.image_encoder.transformer.resblocks)
# Use VPT. Freeze the image encoder.
for param in self.image_encoder.parameters():
param.requires_grad = False
self.num_vpt = num_vpt
self.deep_vpt = deep_vpt
patch_size = self.image_encoder.patch_size[0]
val = math.sqrt(6. / float(3 * patch_size + self.image_encoder.channels))
for idx in range(self.image_encoder_depth if self.deep_vpt else 1):
setattr(self, f"vpt_{idx}", nn.Parameter(torch.empty(self.num_vpt, self.image_encoder.channels)))
nn.init.uniform_(getattr(self, f"vpt_{idx}"), -val, val)
setattr(self, f"vpt_drop_{idx}", nn.Dropout(vpt_drop) if vpt_drop > 0 else nn.Identity())
self.encoder_reduction = self.image_encoder.reduction
self.reduction = self.encoder_reduction if reduction is None else reduction
self.channels = self.image_encoder.channels
self.clip_embed_dim = self.image_encoder.clip_embed_dim
if decoder_cfg is not None:
assert decoder_block is not None, "Expected decoder_block to be a nn.Module, got None."
self.image_decoder = make_resnet_layers(decoder_block, decoder_cfg, in_channels=self.channels, expansion=1, dilation=1)
self.image_decoder.apply(_init_weights)
self.channels = decoder_cfg[-1]
else:
self.image_decoder = nn.Identity()
if self.channels != self.clip_embed_dim:
self.projection = nn.Conv2d(in_channels=self.channels, out_channels=self.clip_embed_dim, kernel_size=1)
self.projection.apply(_init_weights)
else:
self.projection = nn.Identity()
# Text encoder
assert prompt_type in ["number", "word"], f"Expected prompt_type to be 'number' or 'word', got {prompt_type}"
self.prompt_type = prompt_type
self.text_encoder = getattr(_clip, f"{backbone}_txt")()
self.freeze_text_encoder = freeze_text_encoder
if self.freeze_text_encoder:
for param in self.text_encoder.parameters():
param.requires_grad = False
self.bins = bins
self.anchor_points = torch.tensor(anchor_points, dtype=torch.float32, requires_grad=False).view(1, -1, 1, 1)
self._get_text_prompts()
self._tokenize_text_prompts()
if self.freeze_text_encoder:
self._extract_text_features()
else:
self.text_features = None
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07), requires_grad=True)
def _get_text_prompts(self) -> None:
bins = [b[0] if b[0] == b[1] else b for b in self.bins]
self.text_prompts = [format_count(b, self.prompt_type) for b in bins]
print(f"Initialized model with text prompts: {self.text_prompts}")
def _tokenize_text_prompts(self) -> None:
self.text_prompts = _clip.tokenize(self.text_prompts)
def _extract_text_features(self) -> None:
with torch.no_grad():
self.text_features = self.text_encoder(self.text_prompts)
def _prepare_vpt(self, layer: int, batch_size: int, device: torch.device) -> Tensor:
if not self.deep_vpt:
assert layer == 0, f"Expected layer to be 0 when using Shallow Visual Prompt Tuning, got {layer}"
vpt = getattr(self, f"vpt_{layer}").to(device)
vpt = vpt.unsqueeze(0).expand(batch_size, -1, -1)
vpt = getattr(self, f"vpt_drop_{layer}")(vpt)
vpt = vpt.permute(1, 0, 2) # (num_vpt, batch_size, hidden_dim)
assert vpt.shape[1] == batch_size, f"Expected the VPT to have the shape [L_vis B C], got {vpt.shape}."
return vpt
def _forward_vpt(self, x: Tensor) -> Tuple[Tensor]:
device = x.device
batch_size, _, height, width = x.shape
num_h_patches, num_w_patches = height // self.image_encoder.patch_size[0], width // self.image_encoder.patch_size[1]
image_features = self.image_encoder.conv1(x)
image_features = image_features.reshape(batch_size, image_features.shape[1], -1)
image_features = image_features.permute(0, 2, 1) # (B, num_patches, C)
image_features = torch.cat([
self.image_encoder.class_embedding + torch.zeros(batch_size, 1, image_features.shape[-1], dtype=image_features.dtype, device=device),
image_features,
], dim=1) # (B, num_patches + 1, C)
pos_embedding = self.image_encoder._interpolate_pos_embed(num_h_patches, num_w_patches)
image_features = image_features + pos_embedding
image_features = self.image_encoder.ln_pre(image_features)
image_features = image_features.permute(1, 0, 2) # (num_patches + 1, B, C)
assert image_features.shape[0] == num_h_patches * num_w_patches + 1 and image_features.shape[1] == batch_size, f"Expected image_features to have shape [num_patches + 1, B, C], got {image_features.shape}."
vpt = self._prepare_vpt(0, batch_size, device)
for idx in range(self.image_encoder_depth):
# assemble
image_features = torch.cat([
image_features[:1, :, :], # CLS token
vpt,
image_features[1:, :, :],
], dim=0)
# transformer
image_features = self.image_encoder.transformer.resblocks[idx](image_features)
# disassemble
if idx < self.image_encoder_depth - 1:
if self.deep_vpt:
vpt = self._prepare_vpt(idx + 1, batch_size, device)
else:
vpt = image_features[1: (self.num_vpt + 1), :, :]
image_features = torch.cat([
image_features[:1, :, :], # CLS token
image_features[(self.num_vpt + 1):, :, :],
], dim=0)
image_features = image_features.permute(1, 0, 2) # (B, num_patches + 1, C)
image_features = self.image_encoder.ln_post(image_features)
image_features = image_features[:, 1:, :].permute(0, 2, 1) # (B, C, num_patches)
image_features = image_features.reshape(batch_size, -1, num_h_patches, num_w_patches)
return image_features
def _forward(self, x: Tensor) -> Union[Tensor, Tuple[Tensor, Tensor]]:
device = x.device
x = self.image_encoder(x) if self.backbone in resnet_backbones else self._forward_vpt(x)
if self.reduction != self.encoder_reduction:
x = F.interpolate(x, scale_factor=self.encoder_reduction / self.reduction, mode="bilinear")
x = self.image_decoder(x)
x = self.projection(x)
image_features = x.permute(0, 2, 3, 1) # shape (B, H, W, C)
text_features = self.text_encoder(self.text_prompts.to(device)) if self.text_features is None else self.text_features.to(device) # shape (N, C)
image_features = F.normalize(image_features, p=2, dim=-1)
text_features = F.normalize(text_features, p=2, dim=-1)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits = logit_scale * image_features @ text_features.t() # (B, H, W, N), logits per image
logits = logits.permute(0, 3, 1, 2) # (B, N, H, W)
probs = logits.softmax(dim=1)
exp = (probs * self.anchor_points.to(x.device)).sum(dim=1, keepdim=True) # (B, 1, H, W)
if self.training:
return logits, exp
else:
return exp
def forward(self, x: Tensor) -> Union[Tensor, Tuple[Tensor, Tensor]]:
assert len(x.shape) == 4, f"Expected input to have shape (B C H W), got {x.shape}."
if "vit" in self.backbone:
image_height, image_width = x.shape[2], x.shape[3]
window_height, window_width = self.image_encoder.input_resolution
if self.training:
assert (image_height, image_width) == (window_height, window_width), f"Expected input to have shape ({window_height} {window_width}), got ({image_height} {image_width})."
return self._forward(x)
elif (image_height, image_width) == (window_height, window_width): # evaluation, input size = training size
return self._forward(x)
else: # evaluation, input_size != training size, use sliding window prediction
stride_height, stride_width = window_height, window_width
reduction = self.reduction
num_rows = int(np.ceil((image_height - window_height) / stride_height) + 1)
num_cols = int(np.ceil((image_width - window_width) / stride_width) + 1)
windows = []
for i in range(num_rows):
for j in range(num_cols):
x_start, y_start = i * stride_height, j * stride_width
x_end, y_end = x_start + window_height, y_start + window_width
if x_end > image_height:
x_start, x_end = image_height - window_height, image_height
if y_end > image_width:
y_start, y_end = image_width - window_width, image_width
window = x[:, :, x_start:x_end, y_start:y_end]
windows.append(window)
windows = torch.cat(windows, dim=0).to(x.device) # batched windows, shape: (num_windows, c, h, w)
preds = self._forward(windows)
preds = preds.cpu().detach().numpy()
# assemble the density map
pred_map = np.zeros((preds.shape[1], image_height // reduction, image_width // reduction), dtype=np.float32)
count_map = np.zeros((preds.shape[1], image_height // reduction, image_width // reduction), dtype=np.float32)
idx = 0
for i in range(num_rows):
for j in range(num_cols):
x_start, y_start = i * stride_height, j * stride_width
x_end, y_end = x_start + window_height, y_start + window_width
if x_end > image_height:
x_start, x_end = image_height - window_height, image_height
if y_end > image_width:
y_start, y_end = image_width - window_width, image_width
pred_map[:, (x_start // reduction): (x_end // reduction), (y_start // reduction): (y_end // reduction)] += preds[idx, :, :, :]
count_map[:, (x_start // reduction): (x_end // reduction), (y_start // reduction): (y_end // reduction)] += 1.
idx += 1
pred_map /= count_map # average the overlapping regions
return torch.tensor(pred_map).unsqueeze(0) # shape: (1, 1, h // reduction, w // reduction)
else:
return self._forward(x)
def _clip_ebc(
backbone: str,
bins: List[Tuple[float, float]],
anchor_points: List[float],
reduction: Optional[int] = None,
freeze_text_encoder: bool = True,
prompt_type: str = "number",
input_size: Optional[int] = None,
num_vpt: Optional[int] = None,
deep_vpt: Optional[bool] = None,
vpt_drop: Optional[float] = None,
decoder_block: Optional[nn.Module] = None,
decoder_cfg: Optional[List[Union[str, int]]] = None
) -> CLIP_EBC:
if backbone in resnet_backbones:
decoder_block = Bottleneck
if decoder_cfg is None:
if backbone == "resnet50":
decoder_cfg = [2048]
elif backbone == "resnet50x4":
decoder_cfg = [1280]
elif backbone == "resnet50x16":
decoder_cfg = [1536]
elif backbone == "resnet50x64":
decoder_cfg = [2048]
else: # backbone == "resnet101"
decoder_cfg = [2048, 1024]
else:
decoder_block = BasicBlock
if decoder_cfg is None:
if backbone == "vit_b_16":
decoder_cfg = [768]
elif backbone == "vit_b_32":
decoder_cfg = [768]
else: # backbone == "vit_l_14"
decoder_cfg = [1024]
return CLIP_EBC(
backbone=backbone,
bins=bins,
anchor_points=anchor_points,
reduction=reduction,
freeze_text_encoder=freeze_text_encoder,
prompt_type=prompt_type,
input_size=input_size,
num_vpt=num_vpt,
deep_vpt=deep_vpt,
vpt_drop=vpt_drop,
decoder_block=decoder_block,
decoder_cfg=decoder_cfg,
)
|