File size: 19,108 Bytes
570db9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
import math
from collections import OrderedDict
from functools import partial
from typing import Any, Callable, List, NamedTuple, Optional, Tuple

import torch
from torch import nn, Tensor
import torch.nn.functional as F
from torch.hub import load_state_dict_from_url
from einops import rearrange

from ..utils import Conv2dNormActivation, MLP
from ..utils import _log_api_usage_once


weights = {
    "vit_b_16": "https://download.pytorch.org/models/vit_b_16-c867db91.pth",
    "vit_b_32": "https://download.pytorch.org/models/vit_b_32-d86f8d99.pth",
    "vit_l_16": "https://download.pytorch.org/models/vit_l_16-852ce7e3.pth",
    "vit_l_32": "https://download.pytorch.org/models/vit_l_32-c7638314.pth",
    "vit_h_14": "https://download.pytorch.org/models/vit_h_14-6kbcf7eb.pth",
}


class ConvStemConfig(NamedTuple):
    out_channels: int
    kernel_size: int
    stride: int
    norm_layer: Callable[..., nn.Module] = nn.BatchNorm2d
    activation_layer: Callable[..., nn.Module] = nn.ReLU


class MLPBlock(MLP):
    """Transformer MLP block."""

    _version = 2

    def __init__(self, in_dim: int, mlp_dim: int, dropout: float):
        super().__init__(in_dim, [mlp_dim, in_dim], activation_layer=nn.GELU, inplace=None, dropout=dropout)

        for m in self.modules():
            if isinstance(m, nn.Linear):
                nn.init.xavier_uniform_(m.weight)
                if m.bias is not None:
                    nn.init.normal_(m.bias, std=1e-6)

    def _load_from_state_dict(
        self,
        state_dict,
        prefix,
        local_metadata,
        strict,
        missing_keys,
        unexpected_keys,
        error_msgs,
    ):
        version = local_metadata.get("version", None)

        if version is None or version < 2:
            # Replacing legacy MLPBlock with MLP. See https://github.com/pytorch/vision/pull/6053
            for i in range(2):
                for type in ["weight", "bias"]:
                    old_key = f"{prefix}linear_{i+1}.{type}"
                    new_key = f"{prefix}{3*i}.{type}"
                    if old_key in state_dict:
                        state_dict[new_key] = state_dict.pop(old_key)

        super()._load_from_state_dict(
            state_dict,
            prefix,
            local_metadata,
            strict,
            missing_keys,
            unexpected_keys,
            error_msgs,
        )


class EncoderBlock(nn.Module):
    """Transformer encoder block."""

    def __init__(
        self,
        num_heads: int,
        hidden_dim: int,
        mlp_dim: int,
        dropout: float,
        attention_dropout: float,
        norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
    ):
        super().__init__()
        self.num_heads = num_heads

        # Attention block
        self.ln_1 = norm_layer(hidden_dim)
        self.self_attention = nn.MultiheadAttention(hidden_dim, num_heads, dropout=attention_dropout, batch_first=True)
        self.dropout = nn.Dropout(dropout)

        # MLP block
        self.ln_2 = norm_layer(hidden_dim)
        self.mlp = MLPBlock(hidden_dim, mlp_dim, dropout)

    def forward(self, input: Tensor):
        torch._assert(input.dim() == 3, f"Expected (batch_size, seq_length, hidden_dim) got {input.shape}")
        x = self.ln_1(input)
        x, _ = self.self_attention(x, x, x, need_weights=False)
        x = self.dropout(x)
        x = x + input

        y = self.ln_2(x)
        y = self.mlp(y)
        return x + y


class Encoder(nn.Module):
    """Transformer Model Encoder for sequence to sequence translation."""
    def __init__(
        self,
        num_h_patches: int,
        num_w_patches: int,
        num_layers: int,
        num_heads: int,
        hidden_dim: int,
        mlp_dim: int,
        dropout: float,
        attention_dropout: float,
        norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
    ):
        super().__init__()
        self.num_h_patches = num_h_patches
        self.num_w_patches = num_w_patches

        # Note that batch_size is on the first dim because
        # we have batch_first=True in nn.MultiAttention() by default
        seq_length = num_h_patches * num_w_patches + 1  # +1 for the class token
        self.pos_embedding = nn.Parameter(torch.empty(1, seq_length, hidden_dim).normal_(std=0.02))  # from BERT
        self.dropout = nn.Dropout(dropout)
        layers: OrderedDict[str, nn.Module] = OrderedDict()
        for i in range(num_layers):
            layers[f"encoder_layer_{i}"] = EncoderBlock(
                num_heads,
                hidden_dim,
                mlp_dim,
                dropout,
                attention_dropout,
                norm_layer,
            )
        self.layers = nn.Sequential(layers)
        self.ln = norm_layer(hidden_dim)

    def _get_pos_embedding(self, n_h: int, n_w: int) -> Tensor:
        if n_h == self.num_h_patches and n_w == self.num_w_patches:
            return self.pos_embedding
        else:
            pos_embedding = self.pos_embedding[:, 1:, :]
            pos_embedding = rearrange(pos_embedding, "1 (h w) d -> 1 d h w", h=self.num_h_patches, w=self.num_w_patches)
            pos_embedding = F.interpolate(pos_embedding, size=(n_h, n_w), mode="bicubic")
            pos_embedding = rearrange(pos_embedding, "1 d h w -> 1 (h w) d")
            return torch.cat([self.pos_embedding[:, :1, :], pos_embedding], dim=1)

    def forward(self, input: Tensor, n_h: int, n_w: int) -> Tensor:
        torch._assert(input.dim() == 3, f"Expected (batch_size, seq_length, hidden_dim) got {input.shape}")
        input = input + self._get_pos_embedding(n_h, n_w)
        return self.ln(self.layers(self.dropout(input)))


class VisionTransformer(nn.Module):
    """Vision Transformer as a feature extractor."""

    def __init__(
        self,
        image_size: int,
        patch_size: int,
        num_layers: int,
        num_heads: int,
        hidden_dim: int,
        mlp_dim: int,
        dropout: float = 0.0,
        attention_dropout: float = 0.0,
        # num_classes: int = 1000,  # No need for the classification head as we only need the features
        reduction: Optional[int] = None,
        representation_size: Optional[int] = None,
        norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
        conv_stem_configs: Optional[List[ConvStemConfig]] = None,
    ):
        super().__init__()
        _log_api_usage_once(self)
        torch._assert(image_size % patch_size == 0, "Input shape indivisible by patch size!")
        self.image_size = image_size
        self.patch_size = patch_size
        self.hidden_dim = hidden_dim
        self.mlp_dim = mlp_dim
        self.attention_dropout = attention_dropout
        self.dropout = dropout
        # self.num_classes = num_classes
        self.representation_size = representation_size
        self.norm_layer = norm_layer

        if conv_stem_configs is not None:
            # As per https://arxiv.org/abs/2106.14881
            seq_proj = nn.Sequential()
            prev_channels = 3
            for i, conv_stem_layer_config in enumerate(conv_stem_configs):
                seq_proj.add_module(
                    f"conv_bn_relu_{i}",
                    Conv2dNormActivation(
                        in_channels=prev_channels,
                        out_channels=conv_stem_layer_config.out_channels,
                        kernel_size=conv_stem_layer_config.kernel_size,
                        stride=conv_stem_layer_config.stride,
                        norm_layer=conv_stem_layer_config.norm_layer,
                        activation_layer=conv_stem_layer_config.activation_layer,
                    ),
                )
                prev_channels = conv_stem_layer_config.out_channels
            seq_proj.add_module(
                "conv_last", nn.Conv2d(in_channels=prev_channels, out_channels=hidden_dim, kernel_size=1)
            )
            self.conv_proj: nn.Module = seq_proj
        else:
            self.conv_proj = nn.Conv2d(
                in_channels=3, out_channels=hidden_dim, kernel_size=patch_size, stride=patch_size
            )

        seq_length = (image_size // patch_size) ** 2

        # Add a class token
        self.class_token = nn.Parameter(torch.zeros(1, 1, hidden_dim))
        seq_length += 1

        self.encoder = Encoder(
            image_size // patch_size,
            image_size // patch_size,
            num_layers,
            num_heads,
            hidden_dim,
            mlp_dim,
            dropout,
            attention_dropout,
            norm_layer,
        )
        self.seq_length = seq_length

        # heads_layers: OrderedDict[str, nn.Module] = OrderedDict()
        # if representation_size is None:
        #     heads_layers["head"] = nn.Linear(hidden_dim, num_classes)
        # else:
        #     heads_layers["pre_logits"] = nn.Linear(hidden_dim, representation_size)
        #     heads_layers["act"] = nn.Tanh()
        #     heads_layers["head"] = nn.Linear(representation_size, num_classes)

        # self.heads = nn.Sequential(heads_layers)

        if isinstance(self.conv_proj, nn.Conv2d):
            # Init the patchify stem
            fan_in = self.conv_proj.in_channels * self.conv_proj.kernel_size[0] * self.conv_proj.kernel_size[1]
            nn.init.trunc_normal_(self.conv_proj.weight, std=math.sqrt(1 / fan_in))
            if self.conv_proj.bias is not None:
                nn.init.zeros_(self.conv_proj.bias)
        elif self.conv_proj.conv_last is not None and isinstance(self.conv_proj.conv_last, nn.Conv2d):
            # Init the last 1x1 conv of the conv stem
            nn.init.normal_(
                self.conv_proj.conv_last.weight, mean=0.0, std=math.sqrt(2.0 / self.conv_proj.conv_last.out_channels)
            )
            if self.conv_proj.conv_last.bias is not None:
                nn.init.zeros_(self.conv_proj.conv_last.bias)

        # if hasattr(self.heads, "pre_logits") and isinstance(self.heads.pre_logits, nn.Linear):
        #     fan_in = self.heads.pre_logits.in_features
        #     nn.init.trunc_normal_(self.heads.pre_logits.weight, std=math.sqrt(1 / fan_in))
        #     nn.init.zeros_(self.heads.pre_logits.bias)

        # if isinstance(self.heads.head, nn.Linear):
        #     nn.init.zeros_(self.heads.head.weight)
        #     nn.init.zeros_(self.heads.head.bias)

        self.encoder_reduction = self.patch_size
        self.reduction = self.encoder_reduction if reduction is None else reduction
        self.channels = hidden_dim

    def _process_input(self, x: Tensor) -> Tuple[Tensor, int, int, int]:
        # (n, c, h, w) -> (n, hidden_dim, n_h, n_w)
        x = self.conv_proj(x)
        n, _, n_h, n_w = x.shape
        # (n, hidden_dim, n_h, n_w) -> (n, hidden_dim, (n_h * n_w))
        x = x.reshape(n, self.hidden_dim, n_h * n_w)

        # (n, hidden_dim, (n_h * n_w)) -> (n, (n_h * n_w), hidden_dim)
        # The self attention layer expects inputs in the format (N, S, E)
        # where S is the source sequence length, N is the batch size, E is the
        # embedding dimension
        x = x.permute(0, 2, 1)

        return x, n, n_h, n_w

    def forward(self, x: Tensor) -> Tensor:
        # Reshape and permute the input tensor
        x, n, n_h, n_w = self._process_input(x)

        # Expand the class token to the full batch
        batch_class_token = self.class_token.expand(n, -1, -1)
        x = torch.cat([batch_class_token, x], dim=1)

        x = self.encoder(x, n_h, n_w)  # Allows input image to be of any size.

        # Classifier "token" as used by standard language architectures
        # x = x[:, 0]

        # x = self.heads(x)

        x = x[:, 1:, :]
        x = rearrange(x, "n (h w) d -> n d h w", h=n_h, w=n_w)
        if self.encoder_reduction != self.reduction:
            x = F.interpolate(x, scale_factor=self.encoder_reduction / self.reduction, mode="bilinear")
        return x  # To be consistent with timm models


def _vision_transformer(
    patch_size: int,
    num_layers: int,
    num_heads: int,
    hidden_dim: int,
    mlp_dim: int,
    weights: str,
    **kwargs: Any,
) -> VisionTransformer:
    image_size = kwargs.pop("image_size", 224)

    model = VisionTransformer(
        image_size=image_size,
        patch_size=patch_size,
        num_layers=num_layers,
        num_heads=num_heads,
        hidden_dim=hidden_dim,
        mlp_dim=mlp_dim,
        **kwargs,
    )

    if weights is not None:
        weights = load_state_dict_from_url(weights, progress=kwargs.get("progress", True))
        missing_keys, unexpected_keys = model.load_state_dict(weights, strict=False)
        if len(missing_keys) > 0:
            print(f"Missing keys: {missing_keys}")
        if len(unexpected_keys) > 0:
            print(f"Unexpected keys: {unexpected_keys}")

    return model


def interpolate_embeddings(
    image_size: int,
    patch_size: int,
    pos_embedding: Tensor,
    interpolation_mode: str = "bicubic",
) -> Tensor:
    """This function helps interpolate positional embeddings during checkpoint loading,
    especially when you want to apply a pre-trained model on images with different resolution.

    Args:
        image_size (int): Image size of the new model.
        patch_size (int): Patch size of the new model.
        model_state (OrderedDict[str, Tensor]): State dict of the pre-trained model.
        interpolation_mode (str): The algorithm used for upsampling. Default: bicubic.
        reset_heads (bool): If true, not copying the state of heads. Default: False.

    Returns:
        Tensor: The interpolated positional embedding.
    """
    # Shape of pos_embedding is (1, seq_length, hidden_dim)
    n, seq_length, hidden_dim = pos_embedding.shape
    if n != 1:
        raise ValueError(f"Unexpected position embedding shape: {pos_embedding.shape}")

    new_seq_length = (image_size // patch_size) ** 2 + 1

    # Need to interpolate the weights for the position embedding.
    # We do this by reshaping the positions embeddings to a 2d grid, performing
    # an interpolation in the (h, w) space and then reshaping back to a 1d grid.
    if new_seq_length != seq_length:
        # The class token embedding shouldn't be interpolated, so we split it up.
        seq_length -= 1
        new_seq_length -= 1
        pos_embedding_token = pos_embedding[:, :1, :]
        pos_embedding_img = pos_embedding[:, 1:, :]

        # (1, seq_length, hidden_dim) -> (1, hidden_dim, seq_length)
        pos_embedding_img = pos_embedding_img.permute(0, 2, 1)
        seq_length_1d = int(math.sqrt(seq_length))
        if seq_length_1d * seq_length_1d != seq_length:
            raise ValueError(
                f"seq_length is not a perfect square! Instead got seq_length_1d * seq_length_1d = {seq_length_1d * seq_length_1d } and seq_length = {seq_length}"
            )

        # (1, hidden_dim, seq_length) -> (1, hidden_dim, seq_l_1d, seq_l_1d)
        pos_embedding_img = pos_embedding_img.reshape(1, hidden_dim, seq_length_1d, seq_length_1d)
        new_seq_length_1d = image_size // patch_size

        # Perform interpolation.
        # (1, hidden_dim, seq_l_1d, seq_l_1d) -> (1, hidden_dim, new_seq_l_1d, new_seq_l_1d)
        new_pos_embedding_img = nn.functional.interpolate(
            pos_embedding_img,
            size=new_seq_length_1d,
            mode=interpolation_mode,
        )

        # (1, hidden_dim, new_seq_l_1d, new_seq_l_1d) -> (1, hidden_dim, new_seq_length)
        new_pos_embedding_img = new_pos_embedding_img.reshape(1, hidden_dim, new_seq_length)

        # (1, hidden_dim, new_seq_length) -> (1, new_seq_length, hidden_dim)
        new_pos_embedding_img = new_pos_embedding_img.permute(0, 2, 1)
        new_pos_embedding = torch.cat([pos_embedding_token, new_pos_embedding_img], dim=1)

        return new_pos_embedding

    return pos_embedding


def vit_b_16(
    image_size: int = 224,
    reduction: int = 16,
    **kwargs: Any,
) -> VisionTransformer:
    vit = _vision_transformer(
        patch_size=16,
        num_layers=12,
        num_heads=12,
        hidden_dim=768,
        mlp_dim=3072,
        weights=weights["vit_b_16"],
        reduction=reduction,
        **kwargs,
    )
    if image_size != 224:
        vit.image_size = image_size
        new_pos_embedding = interpolate_embeddings(image_size, 16, vit.state_dict()["encoder.pos_embedding"], "bicubic")
        vit.encoder.pos_embedding = nn.Parameter(new_pos_embedding, requires_grad=True)
    return vit


def vit_b_32(
    image_size: int = 224,
    reduction: int = 32,
    **kwargs: Any,
) -> VisionTransformer:
    vit = _vision_transformer(
        patch_size=32,
        num_layers=12,
        num_heads=12,
        hidden_dim=768,
        mlp_dim=3072,
        weights=weights["vit_b_32"],
        reduction=reduction,
        **kwargs,
    )
    if image_size != 224:
        vit.image_size = image_size
        new_pos_embedding = interpolate_embeddings(image_size, 32, vit.state_dict()["encoder.pos_embedding"], "bicubic")
        vit.encoder.pos_embedding = nn.Parameter(new_pos_embedding, requires_grad=True)
    return vit


def vit_l_16(
    image_size: int = 224,
    reduction: int = 16,
    **kwargs: Any,
) -> VisionTransformer:
    vit = _vision_transformer(
        patch_size=16,
        num_layers=24,
        num_heads=16,
        hidden_dim=1024,
        mlp_dim=4096,
        weights=weights["vit_l_16"],
        reduction=reduction,
        **kwargs,
    )
    if image_size != 224:
        vit.image_size = image_size
        new_pos_embedding = interpolate_embeddings(image_size, 16, vit.state_dict()["encoder.pos_embedding"], "bicubic")
        vit.encoder.pos_embedding = nn.Parameter(new_pos_embedding, requires_grad=True)
    return vit


def vit_l_32(
    image_size: int = 224,
    reduction: int = 32,
    **kwargs: Any,
) -> VisionTransformer:
    vit = _vision_transformer(
        patch_size=32,
        num_layers=24,
        num_heads=16,
        hidden_dim=1024,
        mlp_dim=4096,
        weights=weights["vit_l_32"],
        reduction=reduction,
        **kwargs,
    )
    if image_size != 224:
        vit.image_size = image_size
        new_pos_embedding = interpolate_embeddings(image_size, 32, vit.state_dict()["encoder.pos_embedding"], "bicubic")
        vit.encoder.pos_embedding = nn.Parameter(new_pos_embedding, requires_grad=True)
    return vit


def vit_h_14(
    image_size: int = 224,
    reduction: int = 14,
    **kwargs: Any,
) -> VisionTransformer:
    vit = _vision_transformer(
        patch_size=14,
        num_layers=32,
        num_heads=16,
        hidden_dim=1280,
        mlp_dim=5120,
        weights=weights["vit_h_14"],
        reduction=reduction,
        **kwargs,
    )
    if image_size != 224:
        vit.image_size = image_size
        new_pos_embedding = interpolate_embeddings(image_size, 14, vit.state_dict()["encoder.pos_embedding"], "bicubic")
        vit.encoder.pos_embedding = nn.Parameter(new_pos_embedding, requires_grad=True)
    return vit