File size: 17,124 Bytes
570db9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import torch
from torch import nn, Tensor
import torch.nn.functional as F
from functools import partial
from typing import Callable, Optional, Sequence, Tuple, Union, Any, List, TypeVar, List
from types import FunctionType
from itertools import repeat
import warnings
import os
from collections.abc import Iterable

V = TypeVar("V")
curr_dir = os.path.dirname(os.path.abspath(__file__))


vgg_urls = {
    "vgg11": "https://download.pytorch.org/models/vgg11-8a719046.pth",
    "vgg11_bn": "https://download.pytorch.org/models/vgg11_bn-6002323d.pth",
    "vgg13": "https://download.pytorch.org/models/vgg13-19584684.pth",
    "vgg13_bn": "https://download.pytorch.org/models/vgg13_bn-abd245e5.pth",
    "vgg16": "https://download.pytorch.org/models/vgg16-397923af.pth",
    "vgg16_bn": "https://download.pytorch.org/models/vgg16_bn-6c64b313.pth",
    "vgg19": "https://download.pytorch.org/models/vgg19-dcbb9e9d.pth",
    "vgg19_bn": "https://download.pytorch.org/models/vgg19_bn-c79401a0.pth",
}

vgg_cfgs = {
    "A": [64, "M", 128, "M", 256, 256, "M", 512, 512, "M", 512, 512],
    "B": [64, 64, "M", 128, 128, "M", 256, 256, "M", 512, 512, "M", 512, 512],
    "D": [64, 64, "M", 128, 128, "M", 256, 256, 256, "M", 512, 512, 512, "M", 512, 512, 512],
    "E": [64, 64, "M", 128, 128, "M", 256, 256, 256, 256, "M", 512, 512, 512, 512, "M", 512, 512, 512, 512]
}


def _log_api_usage_once(obj: Any) -> None:

    """
    Logs API usage(module and name) within an organization.
    In a large ecosystem, it's often useful to track the PyTorch and
    TorchVision APIs usage. This API provides the similar functionality to the
    logging module in the Python stdlib. It can be used for debugging purpose
    to log which methods are used and by default it is inactive, unless the user
    manually subscribes a logger via the `SetAPIUsageLogger method <https://github.com/pytorch/pytorch/blob/eb3b9fe719b21fae13c7a7cf3253f970290a573e/c10/util/Logging.cpp#L114>`_.
    Please note it is triggered only once for the same API call within a process.
    It does not collect any data from open-source users since it is no-op by default.
    For more information, please refer to
    * PyTorch note: https://pytorch.org/docs/stable/notes/large_scale_deployments.html#api-usage-logging;
    * Logging policy: https://github.com/pytorch/vision/issues/5052;

    Args:
        obj (class instance or method): an object to extract info from.
    """
    module = obj.__module__
    if not module.startswith("torchvision"):
        module = f"torchvision.internal.{module}"
    name = obj.__class__.__name__
    if isinstance(obj, FunctionType):
        name = obj.__name__
    torch._C._log_api_usage_once(f"{module}.{name}")


def _make_ntuple(x: Any, n: int) -> Tuple[Any, ...]:
    """
    Make n-tuple from input x. If x is an iterable, then we just convert it to tuple.
    Otherwise, we will make a tuple of length n, all with value of x.
    reference: https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/utils.py#L8

    Args:
        x (Any): input value
        n (int): length of the resulting tuple
    """
    if isinstance(x, Iterable):
        return tuple(x)
    return tuple(repeat(x, n))


class ConvNormActivation(torch.nn.Sequential):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: Union[int, Tuple[int, ...]] = 3,
        stride: Union[int, Tuple[int, ...]] = 1,
        padding: Optional[Union[int, Tuple[int, ...], str]] = None,
        groups: int = 1,
        norm_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.BatchNorm2d,
        activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
        dilation: Union[int, Tuple[int, ...]] = 1,
        inplace: Optional[bool] = True,
        bias: Optional[bool] = None,
        conv_layer: Callable[..., torch.nn.Module] = torch.nn.Conv2d,
    ) -> None:

        if padding is None:
            if isinstance(kernel_size, int) and isinstance(dilation, int):
                padding = (kernel_size - 1) // 2 * dilation
            else:
                _conv_dim = len(kernel_size) if isinstance(kernel_size, Sequence) else len(dilation)
                kernel_size = _make_ntuple(kernel_size, _conv_dim)
                dilation = _make_ntuple(dilation, _conv_dim)
                padding = tuple((kernel_size[i] - 1) // 2 * dilation[i] for i in range(_conv_dim))
        if bias is None:
            bias = norm_layer is None

        layers = [
            conv_layer(
                in_channels,
                out_channels,
                kernel_size,
                stride,
                padding,
                dilation=dilation,
                groups=groups,
                bias=bias,
            )
        ]

        if norm_layer is not None:
            layers.append(norm_layer(out_channels))

        if activation_layer is not None:
            params = {} if inplace is None else {"inplace": inplace}
            layers.append(activation_layer(**params))
        super().__init__(*layers)
        _log_api_usage_once(self)
        self.out_channels = out_channels

        if self.__class__ == ConvNormActivation:
            warnings.warn(
                "Don't use ConvNormActivation directly, please use Conv2dNormActivation and Conv3dNormActivation instead."
            )


class Conv2dNormActivation(ConvNormActivation):
    """
    Configurable block used for Convolution2d-Normalization-Activation blocks.

    Args:
        in_channels (int): Number of channels in the input image
        out_channels (int): Number of channels produced by the Convolution-Normalization-Activation block
        kernel_size: (int, optional): Size of the convolving kernel. Default: 3
        stride (int, optional): Stride of the convolution. Default: 1
        padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in which case it will be calculated as ``padding = (kernel_size - 1) // 2 * dilation``
        groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
        norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer won't be used. Default: ``torch.nn.BatchNorm2d``
        activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer won't be used. Default: ``torch.nn.ReLU``
        dilation (int): Spacing between kernel elements. Default: 1
        inplace (bool): Parameter for the activation layer, which can optionally do the operation in-place. Default ``True``
        bias (bool, optional): Whether to use bias in the convolution layer. By default, biases are included if ``norm_layer is None``.

    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: Union[int, Tuple[int, int]] = 3,
        stride: Union[int, Tuple[int, int]] = 1,
        padding: Optional[Union[int, Tuple[int, int], str]] = None,
        groups: int = 1,
        norm_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.BatchNorm2d,
        activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
        dilation: Union[int, Tuple[int, int]] = 1,
        inplace: Optional[bool] = True,
        bias: Optional[bool] = None,
    ) -> None:

        super().__init__(
            in_channels,
            out_channels,
            kernel_size,
            stride,
            padding,
            groups,
            norm_layer,
            activation_layer,
            dilation,
            inplace,
            bias,
            torch.nn.Conv2d,
        )


class MLP(torch.nn.Sequential):
    """This block implements the multi-layer perceptron (MLP) module.

    Args:
        in_channels (int): Number of channels of the input
        hidden_channels (List[int]): List of the hidden channel dimensions
        norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the linear layer. If ``None`` this layer won't be used. Default: ``None``
        activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the linear layer. If ``None`` this layer won't be used. Default: ``torch.nn.ReLU``
        inplace (bool, optional): Parameter for the activation layer, which can optionally do the operation in-place.
            Default is ``None``, which uses the respective default values of the ``activation_layer`` and Dropout layer.
        bias (bool): Whether to use bias in the linear layer. Default ``True``
        dropout (float): The probability for the dropout layer. Default: 0.0
    """

    def __init__(
        self,
        in_channels: int,
        hidden_channels: List[int],
        norm_layer: Optional[Callable[..., torch.nn.Module]] = None,
        activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
        inplace: Optional[bool] = None,
        bias: bool = True,
        dropout: float = 0.0,
    ):
        # The addition of `norm_layer` is inspired from the implementation of TorchMultimodal:
        # https://github.com/facebookresearch/multimodal/blob/5dec8a/torchmultimodal/modules/layers/mlp.py
        params = {} if inplace is None else {"inplace": inplace}

        layers = []
        in_dim = in_channels
        for hidden_dim in hidden_channels[:-1]:
            layers.append(torch.nn.Linear(in_dim, hidden_dim, bias=bias))
            if norm_layer is not None:
                layers.append(norm_layer(hidden_dim))
            layers.append(activation_layer(**params))
            layers.append(torch.nn.Dropout(dropout, **params))
            in_dim = hidden_dim

        layers.append(torch.nn.Linear(in_dim, hidden_channels[-1], bias=bias))
        layers.append(torch.nn.Dropout(dropout, **params))

        super().__init__(*layers)
        _log_api_usage_once(self)


def conv3x3(
    in_channels: int,
    out_channels: int,
    stride: int = 1,
    groups: int = 1,
    dilation: int = 1,
) -> nn.Conv2d:
    """3x3 convolution with padding"""
    return nn.Conv2d(
        in_channels,
        out_channels,
        kernel_size=3,
        stride=stride,
        padding=dilation,
        groups=groups,
        bias=False,
        dilation=dilation,
    )


def conv1x1(in_channels: int, out_channels: int, stride: int = 1) -> nn.Conv2d:
    """1x1 convolution"""
    return nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False)


class BasicBlock(nn.Module):
    expansion: int = 1

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        stride: int = 1,
        groups: int = 1,
        base_width: int = 64,
        dilation: int = 1,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
        **kwargs: Any,
    ) -> None:
        super().__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if groups != 1 or base_width != 64:
            raise ValueError("BasicBlock only supports groups=1 and base_width=64")
        if dilation > 1:
            raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv3x3(in_channels, out_channels, stride)
        self.bn1 = norm_layer(out_channels)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(out_channels, out_channels)
        self.bn2 = norm_layer(out_channels)
        self.stride = stride
        if in_channels != out_channels:
            self.downsample = nn.Sequential(
                conv1x1(in_channels, out_channels),
                nn.BatchNorm2d(out_channels),
            )
        else:
            self.downsample = nn.Identity()

    def forward(self, x: Tensor) -> Tensor:
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        out += self.downsample(identity)
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
    # while original implementation places the stride at the first 1x1 convolution(self.conv1)
    # according to "Deep residual learning for image recognition" https://arxiv.org/abs/1512.03385.
    # This variant is also known as ResNet V1.5 and improves accuracy according to
    # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        stride: int = 1,
        groups: int = 1,
        base_width: int = 64,
        dilation: int = 1,
        expansion: int = 4,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
        **kwargs: Any,
    ) -> None:
        super().__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        width = int(out_channels * (base_width / 64.0)) * groups
        self.expansion = expansion
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv1x1(in_channels, width)
        self.bn1 = norm_layer(width)
        self.conv2 = conv3x3(width, width, stride, groups, dilation)
        self.bn2 = norm_layer(width)
        self.conv3 = conv1x1(width, out_channels * self.expansion)
        self.bn3 = norm_layer(out_channels * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.stride = stride
        if in_channels != out_channels:
            self.downsample = nn.Sequential(
                conv1x1(in_channels, out_channels),
                nn.BatchNorm2d(out_channels),
            )
        else:
            self.downsample = nn.Identity()

    def forward(self, x: Tensor) -> Tensor:
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        out += self.downsample(identity)
        out = self.relu(out)

        return out
    

def _init_weights(model: nn.Module) -> None:
    for m in model.modules():
        if isinstance(m, nn.Conv2d):
            nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
            if m.bias is not None:
                nn.init.constant_(m.bias, 0.)
        elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
            nn.init.constant_(m.weight, 1.)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0.)
        elif isinstance(m, nn.Linear):
            nn.init.normal_(m.weight, std=0.01)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0.)


class Upsample(nn.Module):
    def __init__(
        self,
        size: Union[int, Tuple[int, int]] = None,
        scale_factor: Union[float, Tuple[float, float]] = None,
        mode: str = "nearest",
        align_corners: bool = False,
        antialias: bool = False,
    ) -> None:
        super().__init__()
        self.interpolate = partial(
            F.interpolate,
            size=size,
            scale_factor=scale_factor,
            mode=mode,
            align_corners=align_corners,
            antialias=antialias,
        )

    def forward(self, x: Tensor) -> Tensor:
        return self.interpolate(x)


def make_vgg_layers(cfg: List[Union[str, int]], in_channels: int = 3, batch_norm: bool = False, dilation: int = 1) -> nn.Sequential:
    layers = []
    for v in cfg:
        if v == "M":
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
        elif v == "U":
            layers += [Upsample(scale_factor=2, mode="bilinear")]
        else:
            conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=dilation, dilation=dilation)
            if batch_norm:
                layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
            else:
                layers += [conv2d, nn.ReLU(inplace=True)]
            in_channels = v
    return nn.Sequential(*layers)


def make_resnet_layers(
    block: Union[BasicBlock, Bottleneck],
    cfg: List[Union[int, str]],
    in_channels: int,
    dilation: int = 1,
    expansion: int = 1,
) -> nn.Sequential:
    layers = []
    for v in cfg:
        if v == "U":
            layers.append(Upsample(scale_factor=2, mode="bilinear"))
        else:
            layers.append(block(
                in_channels=in_channels,
                out_channels=v,
                dilation=dilation,
                expansion=expansion,
            ))
            in_channels = v

    layers = nn.Sequential(*layers)
    layers.apply(_init_weights)
    return layers