Spaces:
Sleeping
Sleeping
File size: 17,124 Bytes
570db9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
import torch
from torch import nn, Tensor
import torch.nn.functional as F
from functools import partial
from typing import Callable, Optional, Sequence, Tuple, Union, Any, List, TypeVar, List
from types import FunctionType
from itertools import repeat
import warnings
import os
from collections.abc import Iterable
V = TypeVar("V")
curr_dir = os.path.dirname(os.path.abspath(__file__))
vgg_urls = {
"vgg11": "https://download.pytorch.org/models/vgg11-8a719046.pth",
"vgg11_bn": "https://download.pytorch.org/models/vgg11_bn-6002323d.pth",
"vgg13": "https://download.pytorch.org/models/vgg13-19584684.pth",
"vgg13_bn": "https://download.pytorch.org/models/vgg13_bn-abd245e5.pth",
"vgg16": "https://download.pytorch.org/models/vgg16-397923af.pth",
"vgg16_bn": "https://download.pytorch.org/models/vgg16_bn-6c64b313.pth",
"vgg19": "https://download.pytorch.org/models/vgg19-dcbb9e9d.pth",
"vgg19_bn": "https://download.pytorch.org/models/vgg19_bn-c79401a0.pth",
}
vgg_cfgs = {
"A": [64, "M", 128, "M", 256, 256, "M", 512, 512, "M", 512, 512],
"B": [64, 64, "M", 128, 128, "M", 256, 256, "M", 512, 512, "M", 512, 512],
"D": [64, 64, "M", 128, 128, "M", 256, 256, 256, "M", 512, 512, 512, "M", 512, 512, 512],
"E": [64, 64, "M", 128, 128, "M", 256, 256, 256, 256, "M", 512, 512, 512, 512, "M", 512, 512, 512, 512]
}
def _log_api_usage_once(obj: Any) -> None:
"""
Logs API usage(module and name) within an organization.
In a large ecosystem, it's often useful to track the PyTorch and
TorchVision APIs usage. This API provides the similar functionality to the
logging module in the Python stdlib. It can be used for debugging purpose
to log which methods are used and by default it is inactive, unless the user
manually subscribes a logger via the `SetAPIUsageLogger method <https://github.com/pytorch/pytorch/blob/eb3b9fe719b21fae13c7a7cf3253f970290a573e/c10/util/Logging.cpp#L114>`_.
Please note it is triggered only once for the same API call within a process.
It does not collect any data from open-source users since it is no-op by default.
For more information, please refer to
* PyTorch note: https://pytorch.org/docs/stable/notes/large_scale_deployments.html#api-usage-logging;
* Logging policy: https://github.com/pytorch/vision/issues/5052;
Args:
obj (class instance or method): an object to extract info from.
"""
module = obj.__module__
if not module.startswith("torchvision"):
module = f"torchvision.internal.{module}"
name = obj.__class__.__name__
if isinstance(obj, FunctionType):
name = obj.__name__
torch._C._log_api_usage_once(f"{module}.{name}")
def _make_ntuple(x: Any, n: int) -> Tuple[Any, ...]:
"""
Make n-tuple from input x. If x is an iterable, then we just convert it to tuple.
Otherwise, we will make a tuple of length n, all with value of x.
reference: https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/utils.py#L8
Args:
x (Any): input value
n (int): length of the resulting tuple
"""
if isinstance(x, Iterable):
return tuple(x)
return tuple(repeat(x, n))
class ConvNormActivation(torch.nn.Sequential):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, ...]] = 3,
stride: Union[int, Tuple[int, ...]] = 1,
padding: Optional[Union[int, Tuple[int, ...], str]] = None,
groups: int = 1,
norm_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.BatchNorm2d,
activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
dilation: Union[int, Tuple[int, ...]] = 1,
inplace: Optional[bool] = True,
bias: Optional[bool] = None,
conv_layer: Callable[..., torch.nn.Module] = torch.nn.Conv2d,
) -> None:
if padding is None:
if isinstance(kernel_size, int) and isinstance(dilation, int):
padding = (kernel_size - 1) // 2 * dilation
else:
_conv_dim = len(kernel_size) if isinstance(kernel_size, Sequence) else len(dilation)
kernel_size = _make_ntuple(kernel_size, _conv_dim)
dilation = _make_ntuple(dilation, _conv_dim)
padding = tuple((kernel_size[i] - 1) // 2 * dilation[i] for i in range(_conv_dim))
if bias is None:
bias = norm_layer is None
layers = [
conv_layer(
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation=dilation,
groups=groups,
bias=bias,
)
]
if norm_layer is not None:
layers.append(norm_layer(out_channels))
if activation_layer is not None:
params = {} if inplace is None else {"inplace": inplace}
layers.append(activation_layer(**params))
super().__init__(*layers)
_log_api_usage_once(self)
self.out_channels = out_channels
if self.__class__ == ConvNormActivation:
warnings.warn(
"Don't use ConvNormActivation directly, please use Conv2dNormActivation and Conv3dNormActivation instead."
)
class Conv2dNormActivation(ConvNormActivation):
"""
Configurable block used for Convolution2d-Normalization-Activation blocks.
Args:
in_channels (int): Number of channels in the input image
out_channels (int): Number of channels produced by the Convolution-Normalization-Activation block
kernel_size: (int, optional): Size of the convolving kernel. Default: 3
stride (int, optional): Stride of the convolution. Default: 1
padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in which case it will be calculated as ``padding = (kernel_size - 1) // 2 * dilation``
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer won't be used. Default: ``torch.nn.BatchNorm2d``
activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer won't be used. Default: ``torch.nn.ReLU``
dilation (int): Spacing between kernel elements. Default: 1
inplace (bool): Parameter for the activation layer, which can optionally do the operation in-place. Default ``True``
bias (bool, optional): Whether to use bias in the convolution layer. By default, biases are included if ``norm_layer is None``.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int]] = 3,
stride: Union[int, Tuple[int, int]] = 1,
padding: Optional[Union[int, Tuple[int, int], str]] = None,
groups: int = 1,
norm_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.BatchNorm2d,
activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
dilation: Union[int, Tuple[int, int]] = 1,
inplace: Optional[bool] = True,
bias: Optional[bool] = None,
) -> None:
super().__init__(
in_channels,
out_channels,
kernel_size,
stride,
padding,
groups,
norm_layer,
activation_layer,
dilation,
inplace,
bias,
torch.nn.Conv2d,
)
class MLP(torch.nn.Sequential):
"""This block implements the multi-layer perceptron (MLP) module.
Args:
in_channels (int): Number of channels of the input
hidden_channels (List[int]): List of the hidden channel dimensions
norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the linear layer. If ``None`` this layer won't be used. Default: ``None``
activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the linear layer. If ``None`` this layer won't be used. Default: ``torch.nn.ReLU``
inplace (bool, optional): Parameter for the activation layer, which can optionally do the operation in-place.
Default is ``None``, which uses the respective default values of the ``activation_layer`` and Dropout layer.
bias (bool): Whether to use bias in the linear layer. Default ``True``
dropout (float): The probability for the dropout layer. Default: 0.0
"""
def __init__(
self,
in_channels: int,
hidden_channels: List[int],
norm_layer: Optional[Callable[..., torch.nn.Module]] = None,
activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
inplace: Optional[bool] = None,
bias: bool = True,
dropout: float = 0.0,
):
# The addition of `norm_layer` is inspired from the implementation of TorchMultimodal:
# https://github.com/facebookresearch/multimodal/blob/5dec8a/torchmultimodal/modules/layers/mlp.py
params = {} if inplace is None else {"inplace": inplace}
layers = []
in_dim = in_channels
for hidden_dim in hidden_channels[:-1]:
layers.append(torch.nn.Linear(in_dim, hidden_dim, bias=bias))
if norm_layer is not None:
layers.append(norm_layer(hidden_dim))
layers.append(activation_layer(**params))
layers.append(torch.nn.Dropout(dropout, **params))
in_dim = hidden_dim
layers.append(torch.nn.Linear(in_dim, hidden_channels[-1], bias=bias))
layers.append(torch.nn.Dropout(dropout, **params))
super().__init__(*layers)
_log_api_usage_once(self)
def conv3x3(
in_channels: int,
out_channels: int,
stride: int = 1,
groups: int = 1,
dilation: int = 1,
) -> nn.Conv2d:
"""3x3 convolution with padding"""
return nn.Conv2d(
in_channels,
out_channels,
kernel_size=3,
stride=stride,
padding=dilation,
groups=groups,
bias=False,
dilation=dilation,
)
def conv1x1(in_channels: int, out_channels: int, stride: int = 1) -> nn.Conv2d:
"""1x1 convolution"""
return nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module):
expansion: int = 1
def __init__(
self,
in_channels: int,
out_channels: int,
stride: int = 1,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None,
**kwargs: Any,
) -> None:
super().__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError("BasicBlock only supports groups=1 and base_width=64")
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(in_channels, out_channels, stride)
self.bn1 = norm_layer(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(out_channels, out_channels)
self.bn2 = norm_layer(out_channels)
self.stride = stride
if in_channels != out_channels:
self.downsample = nn.Sequential(
conv1x1(in_channels, out_channels),
nn.BatchNorm2d(out_channels),
)
else:
self.downsample = nn.Identity()
def forward(self, x: Tensor) -> Tensor:
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += self.downsample(identity)
out = self.relu(out)
return out
class Bottleneck(nn.Module):
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
# according to "Deep residual learning for image recognition" https://arxiv.org/abs/1512.03385.
# This variant is also known as ResNet V1.5 and improves accuracy according to
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
def __init__(
self,
in_channels: int,
out_channels: int,
stride: int = 1,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
expansion: int = 4,
norm_layer: Optional[Callable[..., nn.Module]] = None,
**kwargs: Any,
) -> None:
super().__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(out_channels * (base_width / 64.0)) * groups
self.expansion = expansion
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(in_channels, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, out_channels * self.expansion)
self.bn3 = norm_layer(out_channels * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.stride = stride
if in_channels != out_channels:
self.downsample = nn.Sequential(
conv1x1(in_channels, out_channels),
nn.BatchNorm2d(out_channels),
)
else:
self.downsample = nn.Identity()
def forward(self, x: Tensor) -> Tensor:
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
out += self.downsample(identity)
out = self.relu(out)
return out
def _init_weights(model: nn.Module) -> None:
for m in model.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
if m.bias is not None:
nn.init.constant_(m.bias, 0.)
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1.)
if m.bias is not None:
nn.init.constant_(m.bias, 0.)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, std=0.01)
if m.bias is not None:
nn.init.constant_(m.bias, 0.)
class Upsample(nn.Module):
def __init__(
self,
size: Union[int, Tuple[int, int]] = None,
scale_factor: Union[float, Tuple[float, float]] = None,
mode: str = "nearest",
align_corners: bool = False,
antialias: bool = False,
) -> None:
super().__init__()
self.interpolate = partial(
F.interpolate,
size=size,
scale_factor=scale_factor,
mode=mode,
align_corners=align_corners,
antialias=antialias,
)
def forward(self, x: Tensor) -> Tensor:
return self.interpolate(x)
def make_vgg_layers(cfg: List[Union[str, int]], in_channels: int = 3, batch_norm: bool = False, dilation: int = 1) -> nn.Sequential:
layers = []
for v in cfg:
if v == "M":
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
elif v == "U":
layers += [Upsample(scale_factor=2, mode="bilinear")]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=dilation, dilation=dilation)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return nn.Sequential(*layers)
def make_resnet_layers(
block: Union[BasicBlock, Bottleneck],
cfg: List[Union[int, str]],
in_channels: int,
dilation: int = 1,
expansion: int = 1,
) -> nn.Sequential:
layers = []
for v in cfg:
if v == "U":
layers.append(Upsample(scale_factor=2, mode="bilinear"))
else:
layers.append(block(
in_channels=in_channels,
out_channels=v,
dilation=dilation,
expansion=expansion,
))
in_channels = v
layers = nn.Sequential(*layers)
layers.apply(_init_weights)
return layers
|